New LHC data puts ‘new physics’ lead to bed

One particle in the big zoo of subatomic particles is the B meson. It has a very short lifetime once it’s created. In rare instances it decays to three lighter particles: a kaon, a lepton and an anti-lepton. There are many types of leptons and anti-leptons. Two are electrons/anti-electrons and muons/anti-muons. According to the existing theory of particle physics, they should be the decay products with equal probability: a B meson should decay to a kaon, electron and anti-electron as often as it decays to a kaon, muon and anti-muon (after adjusting for mass, since the muon is heavier).

In the last 13 years, physicists studying B meson decays had found on four occasions that it decayed to a kaon, electron and anti-electron more often. They were glad for it, in a way. They had worked out the existing theory, called the Standard Model of particle physics, from the mid-20th century in a series of Nobel Prize-winning papers and experiments. Today, it stands complete, explaining the properties of a variety of subatomic particles. But it still can’t explain what dark matter is, why the Higgs boson is so heavy or why there are three ‘generations’ of quarks, not more or less. If the Standard Model is old physics, particle physicists believe there could be a ‘new physics’ out there – some particle or force they haven’t discovered yet – which could really complete the Standard Model and settle the unresolved mysteries.

Over the years, they have explored various leads for ‘new physics’ in different experiments, but eventually, with more data, the findings have all been found to be in line with the predictions of the Standard Model. Until 2022, the anomalous B meson decays were thought to be a potential source of ‘new physics’ as well. A 2009 study in Japan found that some B meson decays created electron/anti-electrons pairs more often than muons/anti-muon pairs – as did a 2012 study in the US and a 2014 study in Europe. The last one involved the Large Hadron Collider (LHC), operated by the European Organisation for Nuclear Research (CERN) in France, and a detector on it called LHCb. Among other things, the LHCb tracks B mesons. In March 2021, the LHCb collaboration released data qualitatively significant enough to claim ‘evidence’ that some B mesons were decaying to electron/anti-electron pairs more often than to muon/anti-muon pairs.

But the latest data from the LHC, released on December 20, appears to settle the question: it’s still old physics. The formation of different types of lepton/anti-lepton particle pairs with equal probability is called lepton-flavour universality. Since 2009, physicists had been recording data that suggested that one type of some B meson decays were violating lepton-flavour university, in the form of a previously unknown particle or force acting on the decay process. In the new data, physicists analysed B meson decays in the current as well as one of two other pathways, and at two different energy levels – thus, as the official press release put it, “yielding four independent comparisons of the decays”. The more data there is to compare, the more robust the findings will be.

This data was collected over the last five years. Every time the LHC operates, it’s called a ‘run’. Each run generates several terabytes of data that physicists, with the help of computers, comb through in search of evidence for different hypotheses. The data for the new analysis was collected over two runs. And it led physicists to conclude that B mesons’ decay does not violate lepton-flavour universality. The Standard Model still stands and, perhaps equally importantly, a 13-year-old ‘new physics’ lead has been returned to dormancy.

The LHC is currently in its third run; scientists and engineers working with the machine perform maintenance and install upgrades between runs, so each new cycle of operations is expected to produce more as well as more precise data, leading to more high-precision analyses that could, physicists hope, one day reveal ‘new physics’.