Five reflections on science day

Science Day isn’t a very meaningful occasion in and of itself. It is the day C.V. Raman discovered the light-scattering effect named for him. Raman won a Nobel Prize for his discovery, and – by commemorating February 28 as ‘Science Day’ – India has come to celebrate the Nobel Prize itself more than anything else.

Indeed, if we had to save one day each for all the significant contributions to our knowledge of the natural universe that Indian scientists have made, a year would have to be thousands of days long. And every day would be Science Day (as it should).

However, February 28 has been Science Day for over three decades, so even if not for Raman, it has become embellished in our history as a tradition. It ought to be dismantled, of course, but if it is not, it ought to be accorded an identity and purpose more suited to India’s aspirations in the 21st century.

It appears the theme for Science Day 2019 is ‘Science for the people, people for the science’. So let’s repurpose the opportunity to reflect on some things the people are doing vis-à-vis science in India.

1. Since 2014, the Narendra Modi government has ridden on multiple waves of fake news, superstitions and pseudoscientific beliefs. An unexpected number of writers and journalists have countered it – with varying degrees of success – and, in the process, have engaged more with science and research themselves. There are certainly more science writers in 2019 than there were in 2014, as well as more publishers aware of the importance of science journalism.

2. Scientists were slow to rise to the mic and express their protest as a community against the government’s bigotry, majoritarianism and alchemies – but rise they did. There is still a long way to go in terms of their collectivisation but now there is precedent. There is also a conversation among scientists, science writers and journalists and some government officials about the responsibilities of science academies and the importance of communication: either speaking truth to power or having a conversation with the people. (AWSAR is a good, if awkward, step in this direction.)

3. The rule of the BJP-RSS combine, together with various satellite organisations, has helped disrupt the idea of authority in India. Consider: some bhakt somewhere forwards a dubious claim; another finds an obscure paper and an obscure expert to back their beliefs up; a third staves off scrutiny by taking jabs at commentators’ lack of expertise. But if we’re to beat back this deleterious tide of make-believe, we must all ask questions of everything. Authority longs for exclusivity and secrecy but it must not be allowed to get there, even if it means the ivory towers of the ‘well-meaning’ are torn down.

4. Many, if not most, scientists still cling to the modernist view of their enterprise: that it is the pursuit of objective truths, and that only science can uncover these truths. But in the last five years, it is the social scientists and humanities scholars who have helped us really understand the times we live in, forging connections between biology, psychology, class, caste, gender, politics, economics and cultures. Reality isn’t science’s sole preserve, so thanks to the non-scientist-experts for helping us situate science in these fraught times as well.

5. Scientific illiteracy can be less ignored now than it ever has been because of the way the BJP, and members of the upper-castes to which it panders, have sought to exploit it. From gau mutra to “braid cutting”, from attempting to rewrite textbooks to formalising Vedic education, from failing to condemn the murders of rationalists to spending Rs 3,000 crore on a statue instead of improving higher education, the government has run roughshod over too many aspirations. So kudos to the teachers in classrooms, and the parents who place a premium on education.

The Wire
February 28, 2019

Research funds gridlock: who wants what

On January 30, the Union ministry of finance announced a 24-25% hike in the junior (JRF) and senior research fellowships (SRF) amounts effective from January 1, 2019.

The decision had been prompted by a longstanding demand of India’s community of young scholars, who availed these fellowships to support themselves at the start of their careers as scientists. In 2018, their discontent snowballed into widespread protests, with scholars demanding an 80% hike in the JRF/SRF amounts.

Their demands reveal a picture of people trying to wriggle out of a system that, through its various inadvertent flaws, has been exploiting them.

After the protests, officials from the Department of Science and Technology (DST) and the Ministry of Human Resource Development (MHRD), together with K. VijayRaghavan, the principal scientific advisor, intervened, deliberated with the scholars and presented their case to the finance ministry.

But because of the large difference between the ask and what has been given, scholars have confirmed that the protests will continue. In fact, on February 2, many of them will gather at AIIMS, New Delhi, for a stock-taking exercise and to plan their next steps.

Different win-win situations

Time is also of the essence, as the scholars are looking for a speedy resolution. However, VijayRaghavan noted, “There are many fellowships, many agencies, and the bottlenecks are there from the laboratory, the institution to the agencies and back.”

According to the DST, the 24-25% hike will benefit 60,000 fellows, and incur an additional expense of Rs 1,500 crore. In this milieu, VijayRaghavan believes that effecting yet another one-time hike and keeping the students waiting for four more years would not solve the problem.

Most people agree that perhaps the worst part issue in all of this is that the scholars don’t receive fellowships that have already been sanctioned on time. VijayRaghavan said that the DST is working on installing a “mechanism” that will ensure the JRF/SRF emoluments are disbursed on time. With this in place, he added, the 24-25% hike “is better seen as the base of a ramp”.

As heartening as this is, scholars are wary because neither this mechanism nor the committee that will oversee it were mentioned in the official memo they received from the DST announcing the hike. And because verbal assurances have yielded subpar – from their point of view – results thus far, they’re less inclined to hope until a formal decision has been made.

A PhD student (who requested anonymity) added that young scientists funded by the Centre should simply be brought under the Pay Commission instead of pursuing anything else: “That would solve most of our problems.”

A poster at a protest depicting the MHRD's promises of a speedy resolution. Credit: IISc Students Council
A poster at a protest depicting the MHRD’s promises of a speedy resolution. Credit: IISc Students Council

And not doing so also detracts from the scholars’ attempts to acquire more respect. As another scholar said, “We need to be treated better. If we’re treated as employees instead of students – equivalent to children – in the professional place, it would improve the professionalism.”

Beyond the one-time transactions of the hikes themselves, VijayRaghavan said he and his colleagues are considering a slew of additional incentives that they are hoping will prove to be a win for the research at large as well as a win for individual researchers.

He said they are mulling incentives for teaching (TA) and research assistance (RA). The TA/RA scheme is expected to be similar to the one in most American universities, where PhD students conduct undergraduate classes and assist senior researchers, both against an offset in their fees.

But another PhD scholar said that TA schemes already exist in some places, and the problem was different. “The institutes try their best to get as much job done as possible by paying less. The TA amount we receive is Rs 100 per hour and for a maximum of 120 hours.”

And even when the hours worked increase, “the amounts don’t,” and there is no way to complain when this happens.

What’s a paper worth?

Officials are also considering a ‘rewards for publication’ scheme, the contours of which are less clear. VijayRaghavan said, “The goal is to gently nudge a turn towards quality, not quantity, driven by the student also taking the initiative.”

A parallel scheme is already at work in China, where, according to many observers, it has reaped great rewards for the country’s institutions and for their international ranking. But it has also raised grave doubts about how it could be damaging the country’s research ethos.

In the early 1990s, Nanjing University began rewarding its researchers for publishing papers in certain journals. By the late 1990s, it was the top Chinese university by number of papers published in journals indexed in the Web of Science database. This in turn increased the university’s ranking and encouraged other universities to follow suit. At the time, a higher ranking meant more funds from the government.

Exactly how much a scientist received for each paper wasn’t clear until 2017. Then, a group of Chinese and American researchers revealed that scientists publishing in prestigious titles like Nature and Science earned over $43,000 – or Rs 30.7 lakh – per paper.

This raises many questions about how a similar scheme in India could work without damaging the publishing culture. It would also require guarding against a variety of threats that India’s academic setup will need to be ‘upgraded’ to handle.

For example, an already prevalent obsession with publishing in ‘prestigious’ journals often prompts evaluators to devalue studies published in other journals – even if they have equal or greater merit.

Part of the reason this happens is that a journal’s prestige is used as a proxy for the quality of research published in it. Such proxies are necessary because evaluators either don’t have the time to judge each paper on its own or don’t want to. So a new reward system that asks for more of their time might not work.

Gautam Menon, a computational biologist at the Institute of Mathematical Sciences (IMSc), Chennai, said that if the Chinese model is anything to go by, “it’s a bad idea”.

The scheme “introduces an incentive that favours certain types of work over others, especially in ‘flavour-of-the-moment’ areas where publishing is easier since journals always want to increase their impact factors; it increases the incentive to cheat, especially if the monetary rewards are substantial,” he added.

And “it reduces the value of ‘intellectual scholarship’, if the only way one assumes such scholarship is whether the scientist has been appropriately rewarded in this manner.”

Its ultimate effect would be to “downgrade long, scholarly publications in society journals in favour of the more magazine-type articles in Science, Nature, etc.”

VijayRaghavan acknowledged the idea is “double-edged” for all these reasons. “So steps have to be taken to maximise the positive and minimise the negatives. If this is not possible, it may be wiser not to do this at all.”

“Rewards should be part of the grant system,” said Rahul Siddharthan, Menon’s colleague at IMSc, “and not a reward after the fact. For scientists, good research
is its own reward. Recognise it by more generous and flexible funding.”

Generous, flexible funding – that’s where all conversations on these topics stop, almost as if a lot of what’s ailing India’s research community is because too many people have been crammed into a small fiscal space. And in turn this has localised prestige, resources and attention in awkward places.

As an alternative, Menon suggests increasing the “number of high-risk, high-reward proposals, ensuring they are funded fast, and ensuring they are publicised.” Together with fewer constraints on how that money is spent and advertising them as ‘prestigious’, such a scheme could be a more workable “alternative” to ‘rewards for publication’.

This could also help tackle the anti-basic-science bias many scholars are starting to see in the government’s actions and ministers’ speeches, and also beat back divisive schemes like the Prime Minister’s Research Fellowship.

In all of this, one goal has been achieved. The conversations that have to happen if the scholars are to be treated better are finally happening now, thanks to greater – but still insufficient – government participation. It is only regrettable that the trigger had to be distress.

The Wire
February 2, 2019

The history, culture and science of ‘cardiac coherence breathing’

A recent article in Scientific American on the benefits of “proper breathing” for overall health has ignited anger across social media, with many in India accusing the magazine of rebranding or even appropriating the ancient Indian breathing technique of ‘pranayama’.

https://platform.twitter.com/widgets.js

The outrage on display seems prompted by Scientific American‘s tweet, rather than the article itself, which makes multiple flattering references to pranayama, yoga and the knowledge of the East.

Of course, given the track record of the West, the outrage is perfectly understandable. Western scientists have frequently been guilty of (re)discovering something that’s been around for many centuries, attempting to package it as something new, and in the process depriving it of its cultural heritage in the name of sanitising it for scientific examination. There was a similar incident with banana leaves last year and with turmeric latte before that.

However, Scientific American‘s article and the reaction it has prompted offer more than an opportunity to just outrage; they offer a chance to reflect on and unpack a lot of things going on here. One example that comes immediately to mind is the role of science in society, as opposed to science’s relation to society, as if it were a separate entity somehow.

‘Cardiac coherence breathing’, as the article characterises pranayama, is the language of a specialist within science. That doesn’t make it wrong, even though claiming it is something novel would be misguided, but that does remove the technique from the commons and away from the people, using language that isn’t very accessible, and making it sound more alien than it actually is. On the other hand, calling it ‘pranayama’ – by way of its storied relationship with yoga – keeps it within the commons.

This is simply a reflection of the scientist’s isolation from society’s broader goals, in the West as much as in the modern East. It’s also a reflection of the kind of language scientists have been trained to, and are encouraged to, use. For example, you no longer read scientific papers today that are easy to understand. The writing is predominantly in the passive voice, very dense and is typified by the overuse of ‘science-ese’ like “‘moreover,’ ‘therefore,’ ‘distinct’ and ‘underlying’”. The following is what some scientists have said about the scientific literature:

Typically, it is bloated, dense and so dry that no amount of chewing can make it tasty. (source)

That science has become more difficult for nonspecialists to understand is a truth universally acknowledged. (source)

Modern scientific texts are more impenetrable than they were over a century ago, suggests a team of researchers in Sweden. It’s easy to believe that. (source)

Fans of the TV sitcom Big Bang Theory will have seen this tendency mocked in the title of each episode: ‘The Allowance Evaporation’, ‘The Romance Recalibration’, ‘The Collaboration Contamination’, etc. So ‘cardiac coherence breathing’ sounds about right for pranayama.

Another issue at play here is the seeming incompatibility of knowledge and the tests used to verify knowledge. India has had the former for a very, very long time, as have numerous other non-modern civilisations around the world.

On the other hand, the tests used to verify knowledge have evolved continuously, and the set of tests used today are of Western origin. Further, because of the West’s colonial mindset, knowledge that isn’t verifiable by their methods is treated as non-knowledge or pseudoscience.

Where we have come up short is in breaching this past/present divide – as Youyou Tu did – instead of dismissing one in favour of the other. But even here, it’s still only the regrettable global struggle for primacy at play, motivated by the incentives capitalism offers for it. As the philosopher Samir Chopra wrote:

Legal protections appropriate for tangible objects … are a disaster in the realm of culture, which relies on a richly populated, open-for-borrowing-and-reuse public domain. It is here, where our culture is born and grows and is reproduced, that the term ‘intellectual property’ holds sway and does considerable mischief.

Then again, one can’t just wish this complication away, and the (re)discovery of ‘cardiac coherence breathing’ might just be a good thing. It’s useful that scientists – anywhere, not just in India – are examining pranayama through the scientific method, with the potential to unlock some detail that an Indian, by virtue of her traditional knowledge alone, doesn’t already have.

As the Scientific American article goes on to note:

The method was developed based on the understanding that slow, deep breathing increases the activity of the vagus nerve, a part of parasympathetic nervous system; the vagus nerve controls and also measures the activity of many internal organs. When the vagus nerve is stimulated, calmness pervades the body: the heart rate slows and becomes regular; blood pressure decreases; muscles relax. When the vagus nerve informs the brain of these changes, it, too, relaxes, increasing feelings of peacefulness. Thus, the technique works through both neurobiological and psychological mechanisms.

This is certainly good to know. Where the ‘discovery’ errs is in passing it off as something new, where it runs the risk of being translocated from the commons to the specialists. Terms like ‘vagus nerve’, ‘parasympathetic’ and ‘neurobiological mechanisms’ aren’t exactly part of casual conversation.

An attendant issue is that of cultural misappropriation. Many readers will remember the hoopla over Coldplay’s music video for ‘Hymn for the Weekend’ in 2016. In 2018, we discovered how the British author J.K. Rowling had shoehorned an Indonesian character, played by a Korean actress, into the script for the second Fantastic Beasts film in a bid to have diversity where none existed in her books. The only problem: the mythology she chose to draw from was of Indian origin.

The result, in the writer Achala Upendran’s words:

[Rowling] refuses to accept that her position as creator does not entitle her to rewrite cultural histories and rebrand different mythologies according to her own convenience, especially when this rebranding is so fraught with political implications.

In much the same way, many Western commentators and thinkers – if not scientists and policymakers – refuse to acknowledge that their cultural hegemony doesn’t give them the license to recast existing knowledge according to their convenience. Instead of slicing off one portion for scientific study and another to promote pseudoscience, we need scientists to work together with pranayama and yoga practitioners to marry technical inputs with cultural and spiritual rituals, and enhance their benefits for everyone’s sake.

The Wire
January 31, 2019

Which supercollider will be built?

After CERN announced the plans for its new supercollider, I was surprised no one wanted to address the elephant in the room: the supercollider’s similarity to one announced by China a few months ago.

The Chinese machine is called CEPC (Circular Electron Proton Collider) and the CERN machine, FCC (Future Circular Collider). Both CEPC and FCC have a tunnel length – i.e. ring circumference – of 100 km, four phases of operation, with plans to study the same set of particles in the same time period.

Both Yifang Wang and Michael Benedikt, the respective heads of projects, told me that the similarities validate their respective decisions to go with this particular design, and both of them also evaded the question of which machine will ultimately be built.

To be clear, it’s not likely that both machines will be built. Even if they are, they won’t receive equal support – both in the press and among the world governments – during the initial phase. Physicists working on the projects are free to believe that having two supercolliders can only be a good thing because one will be able to validate the findings of the other. However, the world doesn’t have enough money for both.

The CEPC is expected to cost over $5 billion and the FCC, $15 billion. Both China and CERN have said that their machines will be built with international collaboration, with multiple participating countries supplying the people, the technology and, crucially, the money. And no country in the world is going to want to cough up the moolah for two identical machines to be built at the same time. The counter-argument is simple: the Large Hadron Collider is doing just fine as the only one of its kind.

Now, which machine are you willing to bet will get built? It’s not easy to decide.

CERN already has a working international collaboration and doesn’t have to forge one anew. But the flip side of this is that it could be more bureaucratic at the outset, with the organisation having to clear multiple checks before it can begin construction.

On the other hand, if China isn’t able to build a collaboration that could help fund the project, the CEPC will face all the more resistance than it currently does. Building a supercollider by yourself is a colossal undertaking for any country. But that said, if anyone can do it, it has to be China – we all know this. And if the government sets its mind to it, it won’t even have to deal with the same amount of paperwork that CERN already faces.

In fact, further complications could arise depending on who builds a supercollider first. For example, if China gets a suitable head-start and builds the CEPC half a decade before the FCC, say, then funders of the European project may not be so keen to continue investing.

The only way to break this gridlock would be for one machine to offer something that the other can’t. To my mind, CERN seems better placed to make this happen than its Chinese counterpart, the Institute of High-Energy Physics (IHEP) in Beijing. The European lab already has an array of accelerators and detectors studying different aspects of nuclear physics.

With a little more effort and money, the FCC can be integrated into a larger suite of experiments that can conduct experiments of wider scope. But even then, the possibility of the Chinese going it alone doesn’t seem to go away. We’re already seeing this happen in spaceflight.

I personally believe a CERN machine will be more useful for two reasons: access and diversity. CERN already has mechanisms in place to ensure scientists from developing nations don’t find it harder to access its experiments. It has also undertaken to make papers published based on its findings freely accessible online.

Its workforce is more diverse thanks to its large, functional collaboration, and has demonstrated its commitment to protecting the rights of all those working there. In fact, it looks like CERN has already started advertising this via YouTube.

[youtube https://www.youtube.com/watch?v=ctDgU-mHs3I?feature=oembed&w=480&h=270]

It will be harder to implement similar, if not the same, policies in China, with its closed-off nature and its problematic human rights record.


Update (1:30 pm, same day): A Vox explainer based on the opinions of a few scientists, including Sean Carroll and Sabine Hossenfelder, presents a few interesting perspectives:

  • As I mentioned before, CERN has to get a lot more greenlights on board before it can proceed than China does – that also means opening itself up to opposition from more quarters
  • The cost is proving to be a significant roadblock for both CERN and IHEP, but if at any time China believes itself ready to go it alone, then it will be able to – unlike CERN, and the CEPC will get built instead of the FCC
  • China could just build the supercollider while CERN uses its money to fund smaller science experiments; but the other way round may not work, if Carroll’s caution is to be believed: that if governments don’t have to give $5/15 billion to one physics experiment, they will “never” give it to other physicists for different experiments
  • CERN, according to Hossenfelder, has been overselling what the FCC will be able to actually achieve (more here)

In light of all this information, I think I would be inclined to bet on the CEPC. However, it still unclear whether it is a good idea to advertise the FCC or the CEPC in terms of potential spinoff technologies:

  1. They are unpredictable
  2. If you’re going to throw $5/15 billion at a large group of scientists working on a bunch of experiments on a common subject over three decades, of course something is going to come of it; the question is whether that would be enough
  3. The idea that governments will not bite if “potential spinoffs” aren’t in the offing should merit a reexamination of why we ‘do’ science, and whether spending more on an abstract physics experiment is likely to drive the wedge between science and society further down

As a human being, I believe that ‘knowing’ is the highest aspiration of all, and that we must fund science projects simply because they help us know things about the world, and the universe. The question is how much and when, and given the constraints described above, it shouldn’t be hard to find a solution that everyone can agree with.

Featured image: LHC undergoing upgrades. Credit: CERN.

Breaking down CMB Bharat

A consortium of Indian scientists has submitted a proposal to the national space agency for a new space science mission called CMB Bharat. Let’s break it down.

What is CMB Bharat?

According to Tarun Souradeep, a senior professor at the Inter-University Centre for Astronomy and Astrophysics, Pune, the proposal is for a “comprehensive next generation cosmic microwave background mission in international collaboration, with a major Indian contribution.”

What is the cosmic microwave background?

Very simply put, the cosmic microwave background (CMB) is radiation leftover from the time the first atoms formed in the universe, about 378,000 years after the Big Bang. It is the smoke of the ‘smoking gun’, as it were. It manifests as a temperature of 2.7 K in the emptiest regions of space. Without the CMB, these regions should have exhibited a temperature of 0 K. The ‘microwave’ in its name alludes to the radiation’s frequency: 160.23 GHz which falls in the microwave range.

As radiation that has been around since the dawn of space and time, it carries the signatures of various cosmic events that shaped the universe over the last 13.8 billion years. So scientists hoping to understand more about the universe’s evolution often turn to instruments that study the CMB.

What will CMB Bharat do?

Souradeep: “It proposes near-ultimate survey polarisation that would exhaust the primordial information in this ‘gold-mine’ for cosmology.”

The CMB contains different kinds of information, and each kind can be elicited depending on which instruments scientists use to study it. For example, the European Space Agency’s Planck space probe mapped the CMB’s small temperature variations throughout the universe. Based on this, scientists were able to obtain a clearer picture of how mass is distributed throughout space.

The other major feature of the CMB apart from its temperature is its polarisation. As electromagnetic radiation, the CMB is made up of electric and magnetic fields. When these fields bump into certain forces or objects in their path, the direction they’re pointing in changes. This flip is called a polarisation.

By studying how different parts of the CMB are polarised in different ways, scientists can understand what kind of events might have occurred to have caused those flips. It is essentially detective work to unravel the grandest mysteries ever to have existed.

The CMB Bharat proposal envisages an instrument that will study CMB polarisation to a greater extent than the Planck or NASA WMAP probes did – or, as Souradeep put it, to a “near-ultimate” extent. WMAP stands for Wilkinson Microwave Anisotropy Probe. Planck probed about 10% of the CMB’s polarisation while WMAP probed even less.

What kind of instrument will CMB Bharat be?

Souradeep said that it is an imager with “6,000 to 14,000 power detectors in the focal plane”. The focal plane is simply the plane along which the detectors will make their detections.

They will be maintained at a very low temperature, at much less than 1 K. This is because these instruments will emit heat during operation, which will have to be siphoned away lest it interfere with their observations.

As a result, they will be sensitive in the attowatt range – i.e. to energy changes of the order of 0.000000000000000001 joule per second.

What kind of discoveries will CMB Bharat stand to make?

Its goals are classified broadly as ultra-high energy and high energy.

The ultra-high energy regime refers to a very young universe in which its energy was packed so tightly together that gravitational and quantum mechanical effects didn’t express themselves separately, as they do today. Instead, they were thought to have manifested in the form of a unified ‘quantum gravity’.

Of course, we don’t know this for sure; and even if the universe went through this phase, we don’t really know what reality would have looked like. According to Souradeep, CMB Bharat is expected to be able to “reveal the first clear signature of quantum gravity and ultra-high-energy physics in the very early universe”.

It could also help understand the quantum mechanical counterpart of gravitational waves. These are ripples of energy flowing through the spacetime continuum, and are released when very massive bodies accelerate through the continuum.

The Laser Interferometer Gravitational-wave Observatories – known famously as LIGO – detected the classical, or gravitational, form of these waves and won its makers the Nobel Prize for physics in 2017. Their quantum mechanical side, should it exist, remains a mystery.

CMB Bharat’s high-energy regime refers to constituents of the particulate realm. Per Souradeep, the mission will explore problems in neutrino physics, including help determine how many kinds of neutrinos there actually are and the order of their masses; map the distribution of dark matter; and track baryons (composite particles like protons and neutrons) in the observable universe.

Additionally, the instrument will also be able to study the Milky Way galaxy’s astrophysical properties in greater detail.

What’s the status of CMB Bharat?

“The Indian Space Research Organisation has a programmatic approach to science projects,” Souradeep said. ISRO’s Space Science Programme made an ‘announcement of opportunity’ for future astronomy programmes in February 2017. Following this, he said, a “consortium of cosmology researchers” drafted a proposal for CMB Bharat in April that year.

“The project is under review and consideration.”

Souradeep told The Hindu, “Typically, ambitious space missions of this magnitude take over a decade [to] launch. We would like to be observing for 4-6 years and the time to final release of all data and release could extend to [about] five years.”

The Wire
January 27, 2019

ISRO’s amazing tender notice

The Indian Space Research Organisation (ISRO) has provided more details about its Gaganyaan programme, including new stages for its GSLV Mk III launch vehicle, through – of all things – a tender notice. Such surreptitiousness is par for the course for India’s spaceflight organisation, which has often done next to nothing to publicise even its most high-profile space missions.

According to Google’s timestamp, the notice has been available online since at least August 2017; another version was online on January 25. In it, ISRO has invited quotations for a slew of infrastructure upgrades that will prepare its second launchpad (SLP) at the Satish Dhawan Space Centre, Sriharikota, to support a rocket that can lift humans to space, as well as heavier satellites. The last date to submit proposals is listed as February 20, 2019.

Perhaps the more tantalising details concern two rocket stages, called SC120 and SC200. The Mk III is a three-stage rocket. The first stage comprises two boosters called S200 attached to the sides of the rocket. The second stage is powered by the L110 stage, powered by liquid propellants combusted by a pair of Vikas 2 engines. The ‘S’ and ‘L’ denote solid and liquid, and the numbers denote the total propellant mass they carry.

The third stage is powered by a cryogenic engine, C20. The stages are ignited in the order of their numbering.

The GSLV Mk III. The crew module (as used in the atmospheric reentry experiment in December 2014) is visible in the topmost chamber. Credit: ISRO
The GSLV Mk III. The crew module (as used in the atmospheric reentry experiment in December 2014) is visible in the topmost chamber. Credit: ISRO

The SC in ‘SC120/200’ stands for semi-cryogenic, a type of engine ISRO had already been developing for its reusable launch vehicle programme. Both of them seem to be alternatives for the Mk III rocket’s second stage, the L110.

A discussion on Reddit suggests adapting the GSLV Mk III to be able to use them would require enough changes for the modified version to differ significantly from the original. Such a rocket is then expected to be able to lift over 5,000 kg to the geostationary transfer orbit – a goal that former ISRO chairman A.S. Kiran Kumar spelled out in 2017. With the L110, the Mk III can currently lift up to 4,000 kg.

According to a technical document describing the trailer system used to transport rocket stages, the SC120 stage will be 4 m wide, 17.29 m tall and weigh 11,500 kg. A more futuristic variant is likely to see the SC120 replaced by the SC200 system. Using both together would be infeasible because of their combined weight.

The tender notice also describes a new and heavier cryogenic upper stage called C32, a variant of the C20 engine that the Mk III uses at present. In the Indian space programme, a rocket stage powered by a cryogenic engine carries liquefied oxygen and liquefied hydrogen, a combination shortened in industry parlance as hydrolox. The C32-powered upper stage, according to the transport system specs, will be 4 m wide, 14.75 m long and weigh 7,400 kg, which is 400 kg more than the C20.

The stage with the semi-cryogenic configuration will carry liquefied oxygen and a highly refined form of kerosene called RP-1 – a.k.a. kerolox. Kerolox has a lower specific impulse than liquefied hydrogen. Specific impulse is a measure of “how much more push accumulates as you use that fuel” (source).

However, to its significant credit, RP-1 is 10-times denser, which means the same volume of kerolox will generate more thrust than the same volume of hydrolox (same source: thrust is “the amount of push a rocket engine provides to the rocket”). RP-1 is also cheaper, more stable at room temperature and presents much less of an explosion hazard. A well-known launch vehicle that uses kerolox is the SpaceX Falcon 9.

Additionally, kerolox engines are harder to ignite than hydrolox engines, more so when the propellant flow rate increases as the engine fires for longer. As a result, they are sometimes ignited on the ground itself, where the process can be better controlled. This is unlike the L110 engine, which switches on over 110 seconds after liftoff.

Beyond the crewed spaceflight programme itself, ISRO will need to continue its march to a heavier lift launch vehicle. Many commercial satellites and India’s own GSAT communication satellites are starting to weigh near 7,000 kg, especially as the latter is tasked with bringing more transponders online to sate India’s growing bandwidth demand.

India currently relies on launch vehicles operated by the French company Arianespance, such as its Ariane 5 rocket, to launch such heavy missions. These contracts are very expensive (over Rs 400 crore per launch). On the other hand, using a homegrown and home-operated vehicle is likely to provide better control over the expenditure, support local manufacturing and keep vehicles ready as and when necessary.

Moreover, ISRO has a programme-wise approach to science missions, which means it typically announces opportunities based on the availability of launchers in the future, and not the other way round. In this paradigm, having a heavier lift launch vehicle, akin to China’s giant Long March 5, will present correspondingly greater opportunities to India’s scientific workforce.

At the same time, it is also important that ISRO undertake launches more frequently. This isn’t something the Mk III can help with because – unlike the Polar (PSLV) and Small Satellite Launch Vehicles (SSLV) – it is a much more complex machine, and will be even more so in the SC120/200 configuration. It can’t be setup and launched with as much ease.

This in turn requires a launchpad able to support such an intense workload, together with the logistical requirements for transporting and loading different fuels. As the notice states (lightly edited):

For servicing of semi-cryo stage at the SLP, it is necessary that new facilities and/or augmentations are established apart from augmentation of existing cryo and gas systems together with associated instrumentation and control systems.

1. Isrosene system
2. Liquid oxygen storage and filling system (LOFS)
3. Nitrogen storage and filling system (NSS)
4. Gas storage and servicing system (GSSF)
5. Instrumentation and control systems
6. Cable trench and pipe trench
7. Augmentation of [liquid oxygen] storage at SLP,

etc.

(Isrosene is a grade of kerosene that ISRO has developed as a ‘greener’ fuel to be used on future missions.)

Proposed layout of the augmented SLP. Credit: ISRO
Proposed layout of the augmented SLP. Credit: ISRO

A launchpad upgraded in this fashion will also be useful for the reusable launch vehicle programme, expected to be ready by 2030. Its current design envisages a launch vehicle powered by four or five kerolox semi-cryogenic engines during its ascent (and a scramjet engine during the descent phase).

The Wire
January 26, 2019

Compare ideas with ideas

Avi Loeb in his interview to the New Yorker:

We don’t have as much data as I would like. Given the data that we have, I am putting this on the table, and it bothers people to even think about that, just like it bothered the Church in the days of Galileo to even think about the possibility that the Earth moves around the sun. Prejudice is based on experience in the past. The problem is that it prevents you from making discoveries. If you put the probability at zero per cent of an object coming into the solar system, you would never find it!

There’s a bit of Paul Feyerabend at work here. Specifically:

A scientist who wishes to maximise the empirical content of the views he holds and who wants to understand them as clearly as he possibly can must therefore introduce other views; that is, he must adopt a pluralistic methodology. He must compare ideas with other ideas rather than with ‘experience’ and he must try to improve rather than discard the views that have failed in the competition. … Knowledge so conceived is not a series of self-consistent theories that converges towards an ideal view; it is not a gradual approach to the truth. It is rather an ever increasing ocean of mutually incompatible alternatives, each single theory, each fairy-tale, each myth that is part of the collection forcing the others into greater articulation and all of them contributing, via this process of competition, to the development of our consciousness.

p. 13-14, ch. 2, Against Method, Paul Feyerabend, Verso 2010.

The problem with claiming “it’s aliens”

https://platform.twitter.com/widgets.js

I doubt the New Yorker thinks Harvard University is a big deal the same way many Indians do, but its persistence with Avi Loeb’s ideas only suggests that it is. Or it is being sensational.

Both possibilities are unsettling.

Avi Loeb is a theoretical astrophysicist at the Harvard-Smithsonian Centre for Astronomy. He is quite well known for his outlandish explanations for physical phenomena. Most of them are certainly grounded in known science but still exhibit an atypical affinity towards the outermost limits of our knowledge. (For examples, see the preprint papers he has authored/coauthored here.)

It is for these reasons that Loeb’s ideas are to be taken with a pinch of salt. It is not that they are impossible but that they are immensely improbable. And as an astrophysicist who knows what he is talking about, Loeb also can’t not know that his claims are extraordinary, often to the extent that they do little more than draw attention, either to him or to some deeper issue he claims he is spotlighting:

My motivation, in part, is to motivate the scientific community to collect more data on the next object rather than argue a priori that they know the answer.

But none of these is a problem. The problem arises when, as a magazine of sizeable repute, the New Yorker does a poor job of contextualising his words. For example, Loeb claims in his quote above that we don’t have enough data, but in another place, he says his idea was simply following the facts. But when the interviewer asks him if he is simply plugging holes in the evidence with theories of his own, Loeb dodges with whataboutery.

As mentioned earlier, Loeb’s ideas are improbable, not impossible, which makes them that much harder to refute. If they had not been grounded in science, he could – and would – simply have been dismissed. But Loeb stays within the realm of possibility, albeit right up at the boundary. It is just that, in the process, the New Yorker fails to provide a true impression of the validity of his ideas.

In science, hypotheses that originate within its rules are more valid than those that originate without. But even among the former group, some ideas are more valid than others, and ‘aliens’ is one of the least valid. In this landscape, the New Yorker‘s interview suggests that ‘aliens’ is a reasonable hypothesis by returning repeatedly to Loeb without going through the necessary trouble of clarifying that it is entertaining at best.

(It is possible that the magazine decided it would try to do this through the interview itself, by pushing back against the interviewee effectively enough to make the them ‘concede’ the issues with their position. But all this does is remind me of their trouble with Steve Bannon all over again.)

My favourite way to understand this is through Bertrand Russell’s response when asked what he would say should he one day discover that god actually exists: “Well, I would say that you did not provide much evidence.”

Aliens – if they are around and nearby – are not making themselves easy to detect either. Granted, they represent a form of unknown-unknowns that we should not be so quick to dismiss. We should still look for them. However, we should not pin every other seemingly inexplicable thing on them because that also closes off the non-alien unknown-unknowns. And just like that, we would be guilty of what the New Yorker is doing with Loeb: popularising one explanation to the detriment of more valid others.

This in turn feeds an already-troublesome impression: not that the more far-fetched the claim, the more media coverage it will receive, but that only the most far-fetched claims will receive any coverage at all.

Just how many reusable rocket designs is ISRO working on?

The Indian Space Research Organisation (ISRO) is working on at least three different designs of reusable launch vehicles at the same time.

Together with its endeavours to increase the number of objectives per mission and deploy purpose-built rockets, it seems like ISRO wants to secure a competitive advantage as quickly as possible in all segments of the launch services market: light, medium and heavy.

Last week, ISRO chairman K. Sivan told Times of India that they will be soon testing a prototype two-stage rocket in which both stages will be recoverable after launch. Sivan’s specifications suggest that this project is in addition to, and not in relation to, two others aimed at building rockets with reusable parts.

The first project that ISRO began testing is simply called the Reusable Launch Vehicle (RLV). It is modelled along NASA’s Space Shuttle. However, differences include the fact that it will be powered by five semi-cryogenic engines during ascent and a scramjet engine during descent. When completed by around 2030, it will be able to lift over 10,000 kg to the low-Earth orbit.

ISRO doesn’t yet have a testable prototype in the second project yet. In fact, its details emerged only a month or so ago. Called ADMIRE, it envisions a small two-stage rocket the size of an L40 booster used on the GSLV Mk II. Its payload capability is not known.

But it is known that ADMIRE’s first stage will be recoverable after launch in similar fashion to the first stage of SpaceX’s Falcon 9 rocket. The second stage will be lost after delivering the payload, just like with the Polar (PSLV) and Geosynchronous Satellite Launch Vehicles (GSLV).

The third project, according to Sivan, involves a two-stage rocket. The first stage will be like ADMIRE’s first-stage. The second will resemble a smaller version of the RLV shuttle.

Reusable launch vehicles reduce cost by allowing space agencies to shave off the expense of the recovered stage for every subsequent launch. The only other expenses are capital costs for the infrastructure and a recurring refurbishment cost (which hasn’t been finalised yet).

Though the NASA Space Shuttle typified this paradigm for many decades, it was the Falcon 9 rocket that really popularised it. To SpaceX’s credit, it showed that reusable rockets didn’t have to be as large as the Space Shuttle and didn’t require infrastructure at that scale either. Since then, many space agencies – public and private – have been pursuing their own reusable launcher programmes.

However, why ISRO is pursuing three of them, if not more, at once is not clear. The payload capacities of the ADMIRE and the third project could help understand the organisation’s eventual plans better.

The RLV will be a heavy-lift vehicle, capable of lifting 10,000-20,000 kg to the low-Earth orbit. The second and third projects could be aimed at lower payload capabilities. This would explain their smaller sizes and they would also fit within ISRO’s broader programme of cashing in on the growing small satellites launch market.

The shuttle-like upper-stage of the third project has technically been tested. In May 2016, ISRO flew a scaled-down prototype of the RLV shuttle in a technology demonstration mission. The eventual upper stage is expected to have similar dimensions as the prototype.

However, there are some potential differences between the RLV shuttle and the third project shuttle. For example, the RLV shuttle is larger and will be powered by a scramjet engine during its descent. On the other hand, the third-project shuttle will – to use Sivan’s words – “glide back to Earth and land on an airstrip”.

Since such gliding will require a source of power, it is plausible that ISRO will tack on a scramjet engine to the shuttle stage as well. However, the vehicle’s potential use in lighter missions also suggests ISRO will want to keep the vehicle as light as possible.

ISRO successfully tested its scramjet engine in August 2016, atop an Advanced Technology Vehicle (ATV), essentially a modified version of the RH560 Rohini sounding rocket. An official press release had said that the time that the ATV and scramjet engine together weighed 3,277 kg. Since the RH560 weighs 1,300 kg, the scramjet weighs around 1,900 kg.

In sum, if the third project uses the ADMIRE vehicle’s first stage, then it would work the following way.

First, the two-stage rocket will take off. Once the first stage is exhausted, it will separate from the second stage, glide through the air until it is suitably over the spot it has to land on (in the Bay of Bengal), and descend using retrograde thrusters.

By this time, the second, shuttle-like stage will have reached a suitable altitude at which to deploy the payload. Once that is done, the shuttle will glide back down, similar to the first stage, and descend on an airstrip.

Apart from these tests, ISRO has also been working on accomplishing more per mission itself. During the PSLV C34 and C35 missions, the organisation showed off the rocket’s ability to launch satellites into multiple orbits at different altitudes.

The PSLV C44 mission will do something similar. On January 24, it will lift off with two satellites: the Microsat-R, an imaging satellite built by the Defence Research and Development Organisation, and a student-built satellite called Kalamsat.

After launching Microsat-R, the rocket’s fourth and uppermost stage will climb into a higher, more circular orbit. There, Kalamsat will switch on and use the orbiting stage as a platform to perform some experiments in space.

Finally, later this year, ISRO will conduct the first test flight of its planned Small Satellite Launch Vehicle. It will be a three-stage rocket partly derived from the PSLV, and capable of carrying 300 kg to a Sun-synchronous orbit and 500 kg to the low-Earth orbit.

Its USP is that it can prepared for launch within 72 hours, rendering it highly available – in much the same way ISRO itself wants to be.

The Wire
January 22, 2019

A close shave with the criticism question

Pamela Philipose, the public editor of The Wire, raised an important question towards the end of her latest column:

Sudhir Angadi wants to know why The Wire is “loaded with so much of negativity”. He wants a response to his question before he decides whether he will continue to read its content. Around the same time I received another mail, this time from S.P. Mahapatra, who also found the lack of “positive news” in The Wire distressing. …

Fortunately, he took the trouble to send in his suggestions: “It will be better you write good pieces on the policies of the BJP government and their work over  the last four and a half years; how leakage of public money has stopped through the introduction of Aadhaar; how millions of poor people now have gas and electricity connections; how hundreds of thousands of children are getting immunised; how LED bulbs are being distributed at a cheaper rate and neem-coated urea has been introduced to stop the black marketing in urea.”

But after having come so close, she lets the answer drown in the (legitimate) righteousness of The Wire‘s political journalism. As an employee of The Wire – but more importantly as an editor as well as a reader, I’d like to know the extent to which a focus on criticism is justified in the journalistic enterprise. Indeed, all criticism is fair if it is accurate. However, does that warrant a focus on criticism alone in one’s coverage of the news? That is the question I’d like answered. I don’t prefer that the answer be ‘yes’ or ‘no’ either; I am only interested in the reasoning behind it.

Additionally, I suspect that when a person doesn’t see what my issue is, it’s likelier than not that they implicitly believe journalism is synonymous with adversarial journalism. Criticism can emerge in other, non-adversarial contexts as well. In science journalism, not all stories have to end with piercing state-sponsored veils of secrecy, to use Philipose’s words, and meaningful journalism is to be found as much in the courteous cross-examination of research methods as in questions raised to research administrators.

In this context, outside of the requirements of political news, could an exclusive focus on criticism be justified? Or is one required to “balance” it, in principle, with positive commentaries as well?