Anti-softening science for the state

The group of ministers (GoM) report on “government communication” has recommended that the government promote “soft topics” in the media like “yoga” and “tigers”. We can only speculate what this means, and that shouldn’t be hard. The overall spirit of the document is insecurity and paranoia, manifested as fantasies of reining in the country’s independent media into doing the government’s bidding. The promotion of “soft” stories is in line with this aspiration – “soft” here can only mean stories that don’t criticise the government, its actions or policies, and be like ‘harmless entertainment’ for a politically inert audience. It’s also no coincidence that the two examples on offer of such stories skirt the edges of health and environmental journalism; other examples are sure to include reports of scientific discoveries.

Science is closely related to the Indian state in many ways. The current government in particular, in power since 2014, has been promoting application-oriented R&D (a bias especially visible in budgetary allocations); encouraging ill-prepared research facilities to self-finance; privileging certain private interests (esp. the Reliance and Adani groups) vis-à-vis natural resources like coal, coastal zones and spectrum allocations; pillaging India’s ecological commons for industrialisation; promoting pseudoscience (which further disempowers those closer to society’s margins); interfering at universities by appointing vice-chancellors friendly to the ruling party (and if that doesn’t work, jailing students on ridiculous charges that include dissent); curtailing academic freedom; and hounding after scientists and institutions that threaten its preferred narratives.

With this in mind, it’s important for science journalism outlets and science journalists to not become complicit – inadvertently or otherwise – in the state project to “soften” science, and start reporting, if they aren’t already, on issues with a closer eye on their repercussions on the wider society. The idea that science journalism can or should be objective the way science is is nonsensical because the idea that science is an objective enterprise is nonsensical. The scientific method is a technique to obtain information about the natural universe while steadily subtracting the influence of human biases and other limitations. However, what scientists choose to study, how they design their studies and what is ultimately construed to be knowledge are all deeply human enterprises.

On top of this, science journalism is driven by journalists’ sense of good and bad: We write favourably about the former and argue against the latter. We write about some telescope unravelling a long-standing cosmogonic problem and also publish an article calling out homeopathy’s bullshit. We write a scientific paper that uses ingenious methods to prove its point and also call out Indian academia as an unsafe space for queer-trans people.

Some have advanced a defence that simply focusing on “good science” can inculcate in the audience a sense of what is “worthy” and “desirable” while denying “bad science” the platform and publicity it seeks. This is objectionable on two counts.

First, who decides what is “worthy”? For example, some scientists, especially in the ‘senior’ cadre and the more influential and/or powerful for it, make this choice by deferring to the wisdom of scientific journals, chosen according to their impact factors, and what the journals have deemed worthy of publishing. But abiding by this heuristic only means we continue to participate in and extend the lifetime of the existing ways of knowledge production that privilege white scientists, male scientists and richer scientists – and sensational positive results on topics that the scientists staffing the journals’ editorial boards would like to focus on.

Second, being limited to goodness at a time when badness abounds is bad, at least severely tone-deaf (but I’m disinclined to be so charitable). Very broadly, that science is inherently amoral is a pithy factoid by this point. There have been far too many incidents in history for anyone to still be able to overlook, in good faith, the fact that science’s prescriptions unguided by human morals and values are quite likely to lead to humanitarian disasters. We may even be living through one such. Scientists’ rapid and successful development of new vaccines against a new pathogen was followed by a global rush to acquire enough doses. But the world’s industrial and economic powers have ensured that the strongest among them have enough to vaccine their entire populations more than once, have blocked petitions at global fora to loosen patents on these vaccines to expand manufacturing and distribution, have forced desperate countries to purchase doses at prices higher than those for developed blocs like the EU, and have allowed corporate behemoths to make monumental profits even as they force third-world nations to pledge sovereign assets to secure supplies. It’s fallacious to claim scientific labour makes the world a better place when the fruits of such labour must still be filtered, like so much else, through the capitalist sieve.

There are many questions for the science journalist to consider here: why have some communities in certain countries been affected more than others? Why is there so little data on the vaccines’ consequences for pregnant women? Do we know enough to discuss the pandemic’s effects on women? Why, at a time when so many scientists and engineers were working to design new ventilators, was there no unified standard to ensure usability? If the world has demonstrated that it’s possible to design, test, manufacture and administer vaccines against a new virus in such a short time, why have we been waiting so long for effective defences against neglected tropical diseases? How do the racial, gender and ethnic identifies of clinical trials affect trial outcomes? Is it ethical for countries that hosted vaccine clinical trials to get the first doses? Should we compulsorily prohibit patents on drugs, therapies and devices important to ending pandemics? If so, what might the consequences be for drug development? And what good is a vaccine if we can’t also ensure all the world’s 7.x billion people can be vaccinated simultaneously?

The pandemic isn’t a particularly ‘easy’ example either. For example, if the government promises to develop new supercomputers, who can use them and what problems will they be used to solve? How can we improve the quality and quantity of research conducted at institutes funded by state governments? Why do so many scientists at public universities plagiarise scientific papers? On what basis are the winners of the S.S. Bhatnagar Award chosen? Should we formally do away with subscription-funded scientific journals in favour of open-access publishing, overlay journals and post-publication peer-review? Is methane really a “clean fuel” even though its extraction and transportation will impose a considerable dirty cost? Why can’t we have more GM foods in the market even though the science is ‘good’? Is it worthwhile to invest Rs 10,000 crore in a human spaceflight programme that lacks long-term vision? And so forth.

Simply focusing on “good science” at our present time is not enough. I also reject the argument that it’s not for science journalists to protect or defend science simply because science, whatever it’s interpreted to mean, is not the preserve of scientists. As an enterprise rooted in its famous method, science is a tool of empowerment: it encourages discovery and deliberation; I’m not sure if it’s fair to say it encourages dissent as well but there is evidence that science can accommodate it without resorting to violence and subjugation.

It’s not for nothing that I’m more comfortable holding up an aspirin tablet for someone with a headache than a jar of leaves from the Patanjali Ayurved stable: being able to know how and why something works is power in the same way knowing how the pharmaceutical industry manipulates markets, how to file an RTI application, what makes an FIR valid or invalid, what the election commission’s model code of conduct stipulates or what kind of land a mall can be built on is power. All of it represents control, especially the ability to say ‘no’ and mean it.

This is ultimately what the GoM report fantasises about – and what the present government desires: the annulment of individual and institutional resistance, one subset of which is the neutralisation of science’s ability to provoke questions about atoms and black holes as much as about the circumstances in which scientists study them, about the nature, utility and purpose of knowledge, and the relationships between science, capital and the state.


Addendum

In January 2020, the Office of the Principal Scientific Adviser (PSA) to the Government of India organised a meeting with science journalists and communicators from around the country to discuss what the two parties could do for each other. Us journalists and communicators aired a lot of grievances during the meeting as well as suggestions on fixing long-standing and/or particularly thorny problems (some notes here).

In light of the government’s renewed attention on curbing press freedom and ludicrous suggestions in the report, such as one by S. Gurumurthy that the news should be a “mixture of truth and untruth”, I’m not sure where that leaves the PSA’s plans for future consultation nor – considering parts of the report seemingly manufactured consent – whether good-faith consultation will be possible going ahead. I can only hope that members of this community at least evoke and keep the faith.

Vaccines for votes

A week or so ago, the Bharatiya Janata Party in Bihar released its poll manifesto, the first point on which was that should the party win, it would make a COVID-19 vaccine cleared by the ICMR available for free to every resident of the state. It was an unethical move, and Siddharth Varadarajan and I explained why.

Soon after, trolls on Twitter pointed out that Joe Biden had made the same promise ahead of the US presidential elections. And this morning, Indian Express quoted the Election Commission saying the BJP’s promise didn’t violate the poll code; the report also included a curious paragraph: that “the EC had taken the same stand on a complaint received during the Lok Sabha elections last year against the Congress’s NYAY scheme that guaranteed a minimum income of Rs 6,000 per month, or Rs 72,000 a year, for 25 crore people.”

The BJP’s promise still feels unethical to me. This isn’t for reasons that have anything to do with the poll code if only because the poll code’s scope doesn’t extend beyond the election itself, to the bigger picture.

At the outset, I don’t think vaccines should feature at all in election rhetoric (even if this may be wishful thinking with a majoritarian-populist government). But here we are.

The BJP is in power at the Centre – it runs the national government – and is hoping to come to power in the state. It isn’t necessarily including Nitish Kumar, the state’s incumbent chief minister and whose party the BJP is allied with, because the vaccine promise appeared only in the BJP’s manifesto, not in the alliance’s, and was announced with much fanfare by the Union finance minister. So Kumar was nowhere in the picture but the Centre was. This is a slight but significant difference vis-à-vis Biden’s promise.

State is a health subject in India but a COVID-19 vaccine, should one become available, will have significant participation by the Centre, from purchasing to distribution. Note that India’s states didn’t fight polio – they simply couldn’t. The country has a whole did and today COVID-19 presents an even bigger challenge.

A new study, echoing some older ones, has found that antibodies to COVID-19 fade over a few months. Assuming for a moment that vaccine-induced antibodies work like natural antibodies, and setting aside the fact that the question of antibody persistence is yet to be settled, access to vaccines (including the question of affordability) matters as much as its uniformity. That is, the level of access should be uniform across the epidemic’s ‘jurisdiction’.

For example, if a state with poor pubic health care and infrastructure to begin with is forced to administer the vaccine by itself, failures on its part could allow the virus to become endemic to that region, and allow it spread once again through the rest of the population once their antibody responses have weakened. So an additional pitfall here is if the BJP fragments the responsibility of distributing and administering a COVID-19 vaccine to the states, in an effort to legitimise piecemeal agreements based on political expediency, the vaccination drive will fail, especially in states like Bihar.

So while state governments will be able to decide whether to sell the vaccines for free, the decision depends considerably on the Centre’s cooperation. In effect, the BJP at the Centre abdicates the option to ensure everyone gets the vaccine at no cost when it offers to do so only in a specific area, and in exchange for votes.

Biden is not entirely in the clear either: ‘vaccines for votes’ is a prompt for voters to think of their choice of president as a question of life or death, which is nothing but a dire threat. But neither his case nor that of the Congress’s NYAY scheme are ones of abdicated responsibilities. Neither is yet in power in their respective countries, so neither is pulling back on their existing responsibilities, making their exercise contingent on electoral outcomes or vouchsafing the rewards to – from the epidemic’s PoV – an arbitrary section of the population.

Ayurveda is not a science – but what does that mean?

This post has benefited immensely with inputs from Om Prasad.

Calling something ‘not a science’ has become a pejorative, an insult. You say Ayurveda is not a science and suddenly, its loudest supporters demand to know what the problem is, what your problem is, and that you can go fuck yourself.

But Ayurveda is not a science.

First, science itself didn’t exist when Ayurveda was first born (whenever that was but I’m assuming it was at least a millennium ago), and they were both outcomes of different perceived needs. So claiming ‘Ayurveda is a science’ makes little sense. You could counter that 5 didn’t stop being a number just because the number line came much later – but that wouldn’t make sense either because the relationship between 5 and the number line is nothing like the relationship between science and Ayurveda.

It’s more like claiming Carl Linnaeus’s choice of topics to study was normal: it wouldn’t at all be normal today but in his time and his particular circumstances, they were considered acceptable. Similarly, Ayurveda was the product of a different time, technologies and social needs. Transplanting it without ‘updating’ it in any way is obviously going to make it seem inchoate, stunted. At the same time, ‘updating’ it may not be so productive either.

Claiming ‘Ayurveda is a science’ is to assert two things: that science is a qualifier of systems, and that Ayurveda once qualified by science’s methods becomes a science. But neither is true for the same reason: if you want one of them to be like the other, it becomes the other. They are two distinct ways of organising knowledge and making predictions about natural processes, and which grew to assume their most mature forms along different historical trajectories. Part of science’s vaunted stature in society today is that it is an important qualifier of knowledge, but it isn’t of knowledge systems. This is ultimately why Ayurveda and science are simply incompatible.

One of them has become less effective and less popular over time – which should be expected because human technologies and geopolitical and social boundaries have changed dramatically – while the other is relatively more adolescent, more multidisciplinary (with the right opportunities) and more resource-intensive – which should be expected because science, engineering, capitalism and industrialism rapidly co-evolved in the last 150 years.

Second, ‘Ayurveda is a science’ is a curious statement because those who utter it typically wish to elevate it to the status science enjoys and at the same time wish to supplant answers that modern science has provided to some questions with answers by Ayurveda. Of course, I’m speaking about the average bhakt here – more specifically a Bharatiya Janata Party supporter seemingly sick of non-Indian, especially Western, influences on Indian industry, politics, culture (loosely defined) and the Indian identity itself, and who may be actively seeking homegrown substitutes. However, their desire to validate Ayurveda according to the practices of modern science is really an admission that modern science is superior to Ayurveda despite all their objections to it.

The bhakt‘s indignation when confronted with the line that ‘Ayurveda is not a science’ is possibly rooted in the impression that ‘science’ is a status signal – a label attached to a collection of precepts capable of together solving particular problems, irrespective of more fundamental philosophical requirements. However, the only science we know of is the modern one, and to the bhakt the ‘Western’ one – both in provenance and its ongoing administration – and the label and the thing to which it applies, i.e. the thing as well as the name of the thing, are convergent.

There is no other way of doing science; there is no science with a different set of methods that claims to arrive at the same or ‘better’ scientific truths. (I’m curious at this point if, assuming a Kuhnian view, science itself is unfalsifiable as it attributes inconsistencies in its constituent claims to extra-scientific causes than to flaws in its methods themselves – so as a result science as a system can reach wrong conclusions from time to time but still be valid at all times.)

It wouldn’t be remiss to say modern science, thus science itself, is to the nationalistic bhakt as Ayurveda is to the nationalistic far-right American: a foreign way of doing things that must be resisted, and substituted with the ‘native’ way, however that nativity is defined. It’s just that science, specifically allopathy, is more in favour today because, aside from its own efficacy (a necessary but not sufficient condition), all the things it needs to work – drug discovery processes, manufacturing, logistics and distribution, well-trained health workers, medical research, a profitable publishing industry, etc. – are modelled on institutions and political economies exported by the West and embedded around the world through colonial and imperial conquests.

Third: I suspect a part of why saying ‘Ayurveda is not a science’ is hurtful is that Indian society at large has come to privilege science over other disciplines, especially the social sciences. I know too many people who associate the work of many of India’s scientists with objectivity, a moral or political nowhereness*, intellectual prominence, pride and, perhaps most importantly, a willingness to play along with the state’s plans for economic growth. To be denied the ‘science’ tag is to be denied these attributes, desirable for their implicit value as much as for the opportunities they are seen to present in the state’s nationalist (and even authoritarian) project.

On the other hand, social scientists are regularly cast in opposition to these attributes – and more broadly by the BJP in opposition to normative – i.e. pro-Hindu, pro-rich – views of economic and cultural development, and dismissed as such. This ‘science v. fairness’ dichotomy is only a proxy battle in the contest between respecting and denying human rights – which in turn is also represented in the differences between allopathy and Ayurveda, especially when they are addressed as scientific as well as social systems.

Compared to allopathy and allopathy’s intended outcomes, Ayurveda is considerably flawed and very minimally desirable as an alternative. But on the flip side, uptake of alternative traditions is motivated not just by their desirability but also by the undesirable characteristics of allopathy itself. Modern allopathic methods are isolating (requiring care at a designated facility and time away from other tasks, irrespective of the extent to which that is epidemiologically warranted), care is disempowering and fraught with difficult contradictions (“We expect family members to make decisions about their loved ones after a ten-minute briefing that we’re agonising over even with years of medical experience”**), quality of care is cost-stratified, and treatments are condition-specific and so require repeated hospital visits in the course of a lifetime.

Many of those who seek alternatives in the first place do so for these reasons – and these reasons are not problems with the underlying science itself. They’re problems with how medical care is delivered, how medical knowledge is shared, how medical research is funded, how medical workers are trained – all subjects that social scientists deal with, not scientists. As such, any alternative to allopathy will become automatically preferred if it can solve these economic, political, social, welfare, etc. problems while delivering the same standard of care.

Such a system won’t be an entirely scientific enterprise, considering it would combine the suggestions of the sciences as well as the social sciences into a unified whole such that it treated individual ailments without incurring societal ones. Now, say you’ve developed such an alternative system, called PXQY. The care model at its heart isn’t allopathy but something else – and its efficacy is highest when it is practised and administered as part of the PXQY setup, instead of through standalone procedures. Would you still call this paradigm of medical care a science?

* Akin to the ‘view from nowhere’.
** House, S. 2, E 18.

Featured image credit: hue 12 photography/Unsplash.

The life and death of ‘Chemical Nova’

You know how people pretend to win an Oscar or a Nobel Prize, right? Many years ago, I used to pretend to be the author of a fictitious but, blissfully unmindful of its fictitiousness, award-winning series of articles entitled Chemical Nova. In this series, I would pretend that each article discussed a particular point of intersection between science and culture.

The earliest idea I had along these lines concerned soap. I would daydream about how I was celebrated for kickstarting a social movement that prized access to soap and ability to wash one’s hands under running water, and with this simple activity beat back the strange practice among many of refusing to wash one’s toilet oneself, instead delegating the apparently execrable task to a housemaid.

The fantastic value of Chemical Nova should be obvious: it represented, at least to me, the triumph of logic and reasoning above class-commitments and superstition. The fantasy took shape out of my longstanding ambition to beat down a stubborn Creature, for many years shapeless, that often caused a good review, essay or news report to inspire only cynicism, derision and eventually dismissal on the part of many readers. It was quickly apparent that the Creature couldn’t be subdued with deductive reasoning alone, but for which one had to take recourse through politics and individual aspirations as well, no matter how disconnected from the pretentious ‘quest for truth’ these matters were.

Chemical Nova dissipated for a few years as I set about becoming a professional journalist – until I had occasion to remember it after Narendra Modi’s election as prime minister in 2014. And quickly enough, it seemed laughable to me that I had assumed upper-caste people wouldn’t know how soap worked, or at least of its cleansing properties. An upper-caste individual invested in the continuation of manual scavenging would simply feel less guilty with a bar of soap placed in his dirty bathroom: for scavengers to wash their hands and not be at risk of contracting any diseases.

The belief that ‘the job is theirs to perform’ could then persist unfettered, rooted as it was in some sort of imagined befoulment of the soul – something one couldn’t cleanse, out of reach of every chemical reagent, or even affect in any way except through a lifetime of suffering.

It was a disappointing thought, but in my mind, there was still some hope for Chemical Nova. Its path was no longer straightforward at all insofar as it had to first make the case that the mind, the body and the community are all that matter, that that’s how one’s soul really takes shape, but its message – “ultimately, wash your hands” – still was an easy one to get across. I was tempted and I continued to wait.

However, earlier today, the Creature bared itself fully, exposing not itself as much as the futility of ideas like Chemical Nova. An advertisement appeared in a newspaper displaying a pair of hands kneading some dough, with the following caption: “Are you allowing your maid to knead atta dough by hand? Her hands may be infected.” The asset encouraged readers of the newspaper to buy Kent’s “atta maker & bread maker” instead, accompanied by a photograph of Hema Malini smiling in approval.

Malini has been the brand ambassador for Kent since 2007 and the incumbent Lok Sabha MP from Mathura since 2014. I’m not sure of the extent to which she knew of the advertisement’s contents before her face (and her daughter’s) appeared on it. Her affiliation since 2004 with the Bharatiya Janata Party (BJP), known for its favouritism towards upper-caste Hindus (to put it mildly), doesn’t inspire confidence but at the same time, it’s quite possible that Malini’s contract with Kent allows the company to include her face in promotional materials for a predefined set of products without requiring prior approval in each instance.

But even if Malini had never been associated with the product or the brand, Chemical Nova would have taken a hit because I had never imagined that the Creature could one day be everywhere at once. The chairman of Kent has since apologised for the advertisement, calling it “unintentional” and “wrongly communicated”. But it seems to me that Kent and the ad agency it hired continue to err because they don’t see the real problem: that they wrote those words down and didn’t immediately cringe, that those words were okayed by many pairs of eyes before they were printed.

The triumph of reason and the immutability of chemical reagents are pointless. The normalisation of exclusion, of creating an ‘other’ who embodies everything the in-group finds undesirable, is not new – but it has for the most part been driven by a top-down impulse that often originates in the offices of Narendra Modi, Amit Shah or some senior BJP minister, and often to distract from some governmental failure. But in the coronavirus pandemic, the act of ‘othering’ seems to have reached community transmission just as fast as the virus may have, finding widespread expression without any ostensible prompt.

And while Kent has been caught out evidently because it was the ‘loudest’, I wonder how many others don’t immediately see that what they are writing, saying, hearing or reading is wrong, and let it pass. As Arundhati Roy wrote earlier this week, the attainment of ‘touchlessness’ seems to be the new normal: in the form of a social condition in which physical distance becomes an excuse to revive and re-normalise untouchabilities that have become taboo – in much the same way soap became subsumed by the enterprise it should have toppled.

Examples already abound, with ministers and corporate uncles alike touting the prescient wisdom of our Hindu ancestors to greet others with a namaste instead of shaking hands; to maintain aachaaram, a collection of gendered practices many of which require the (Brahmin) practitioner to cleanse themselves of ‘spiritual dirt’ through habits and rituals easily incorporated into daily life; and now, to use machines that promise to render, in Roy’s words, “the very bodies of one class … as a biohazard to another”.

It started with a bang, but Chemical Nova slips quietly into the drain, and out of sight, for it is no match for its foe – the Creature called wilful ignorance.

Featured image: A snapshot of William Blake’s ‘The Great Red Dragon and the Woman Clothed with the Sun’, c. 1805-1810.

‘Science alone triumphs’: A skeptic annotates

An article entitled ‘Science alone triumphs: Providing a true picture of the world, only science can help India against coronavirus’, penned by a Jayant Sinha, appeared on the Times of India‘s editorials page on April 8, 2020. My annotated reading of the article follows…

As the coronavirus continues its deadly spread around the world, it is only science that protects us. Many different scientists and experts are responding to the global challenge…

A sweeping statement that suggests whatever science can protect for us are the only things worth protecting. Obvious exceptions include social security, access to food and other essential supplies, protection against discrimination and stigma, and of course individual rights. The author quite likely does not intend to imply that one’s biological safety is more important than any of these other attributes, but that’s what the words imply.

… Their deep technical expertise, honed through years of education and practice, keeps us from falling into the abyss.

A bit too florid but okay.

Ultimately, it is the practice of science – developing new ideas, testing them against hard evidence, replicating them successfully, scaling them up, and then further improving them through honest feedback – that drives all of them.

It’s quite heartening to have a lawmaker acknowledge these aspects of the scientific method, esp. a member of the Bharatiya Janata Party, but these exact are also curious at this time. The Indian Council of Medical Research has allowed frontline health workers to consume hydroxychloroquine as a prophylactic against COVID-19 with flimsy (if that) evidence to support the drug’s efficacy and safety. Where are the tests, leave alone the replication studies?

This is the quintessential scientific method, the unrelenting search for truth.

More than 99% of the article’s readers are unlikely to notice a difference between the scientific method and the search for truths (I prefer using the plural), but it exists: the scientific method is a way to acquire new knowledge about the natural universe. The nature of the quest depends on the practitioner – the scientist.

What science tells us about coronavirus infections has reached everyone. People are wearing masks, washing their hands, and avoiding crowds. Yet most people I meet are stumped by questions such as: What is a virus? How does it actually spread? How does your body fight the coronavirus? Why do some people die from the virus? This indeed is the great paradox of our times.

Truly!

Even as science becomes more vital, fewer and fewer people understand and appreciate it. As a child who loved science, as a young man trained in engineering, and as a technocrat who believes in analytical reasoning and hard evidence, I find this hard to accept.

I’m not sure if the author means he does not understand why this paradoxical engagement with science persists but I have some ideas:

  1. Science is becoming increasingly more specialised, and a lot of what we learn from the cutting edge these days cannot be communicated to anyone without at least 18 years of education.
  2. Most people think they understand science when they really mean they’re familiar with its commonest precepts and scientists’ pronouncements. Their knowledge is still only based on faith: that, for example, the new coronavirus spreads rapidly but not why so, freeing them to use scientific knowledge in unscientific narratives.

(Reason: because the virus’s spike proteins have evolved to establish stronger bonds with the ACE2 receptor protein produced by cells in the respiratory tract, compared to the spike proteins of the closely related SARS virus, as well as the ability to attach, albeit less strongly, to another protein – furin – produced by all cells in the body.)

To change this state of affairs, we must focus on four key areas. … We are afflicted by too much quackery and superstition.

Is this article really a dog-whistle? The author is the BJP MP from Hazaribagh (Jharkhand) so there is some comfort – no matter how fleeting – that the BJP is not completely devoid of appreciation for science. However, I’m curious how often the author has brought these issues up with other BJP lawmakers, including the prime minister himself, who have frequently issued a stream of nonsense that undermines a scientific understanding of the world. The answer wouldn’t affect what we should or shouldn’t take away from this piece, but this not uncommon practice of speaking sense in some fora but shutting up in others is annoying, especially when the speaker wields some power.

… Of course, mythology has immense power to shape people’s beliefs, but it must be acknowledged that it is only science that can solve our material problems.

Well said… I think. Can’t be a 100% sure.

While there is certainly much wisdom in age-old practices, it is primarily because there is a genuine scientifically proven cause-and-effect relationship that underlies these practices.

No. Specifically, causality – nor any of the properties we associate with modern science – is not a precondition for traditional wisdom, beliefs and rituals, nor is it meaningful to attempt to validate such wisdom, beliefs and rituals using filters developed to qualify scientific theories of the natural universe. Science and tradition (in many contexts) are born of and seek to fulfil different purposes. Additionally, science alone does not empower – traditional practices do as well (look no further than tribal groups that have been stewarding many of India’s forests for centuries) – and science abandoned by the guiding hand of social forces has often become an instrument of disempowerment.

… In short, we would all be much better off if we shifted some of our time and resources away from blind faith and towards a better scientific understanding of the world.

This is very true. Faith has its place in the world (more so than some might like to acknowledge); outside this finite domain, however, it’s a threat.

Second, our children must learn honestly about science. There is no ‘Western’ concept of science taught in schools which should then be negated at home. Science is universal – just look up the path-breaking research conducted by SN Bose, or CV Raman, or S Chandrasekhar. The pure scientific truth that they discovered holds true everywhere, even in the deep cosmos.

💯 A diversity in the choice of names (by gender or by caste, for example) would have been better.

Teachers and parents must tell children that science is the pursuit of truth and provides a true picture of the world.

As the children grow up, can we encourage our teachers and parents to communicate more nuanced ideas of what science is and why it was invented?

… We should not demand obedience from our children, rather we should encourage them to probe all that we do. …

Again, is this article really a dog-whistle?

Third, we must revere our scientists and technologists.

Never revere another human. Never assume anyone is closed off to (constructive) criticism, particularly when they deserve it. Obviously there’s a time and place (including absurd advice like “don’t berate a surgeon in the middle of a surgery”), but when such opportunities arise don’t let reverence stop you.

It is through their efforts that we flourish today.

Brian Josephson won the Nobel Prize for physics in 1973 for predicting the Josephson effect but he also supported the “water memory” hypothesis that claimed to make sense of homeopathic remedies. Giving scientists the keys to running the world is not guaranteed to produce the desired results.

… Even our start-up culture tends to value the business celebrity, not so much the tech nerd. …

The author is probably thinking of celebrity tech nerds, the Bezoses and the Jobses. “Nerds” and “geeks” in general have become more popular and their culture more socially and commercially profitable.

Billions of dollars of wealth has been created by writing great code, developing insanely good products, creating clever new financial solutions, and establishing entirely new scientific approaches. …

Many of these “insanely good products” have also progressively eroded democracy. To quote Jacob Silverman in The Baffler (at length, hoping Silverman doesn’t mind):

The fundamental underlying problem is the system of economic exchange we’re dealing with, which is sometimes called surveillance capitalism. It’s surveillance capitalism that, by tracking and monetizing the basic informational content of our lives, has fueled the spectacular growth of social media and other networked services in the last fifteen years. Personal privacy has been annihilated, and power and money have concentrated in the hands of whoever owns the most sophisticated machine to collect and parse consumer data. Because of the logic of network effects—according to which services increase in value and utility as more people use them—a few strong players have consolidated their control over the digital economy and show little sign of surrendering it.

It wasn’t supposed to be this way. For years, tech executives and data scientists maintained the pose that a digital economy run almost exclusively on the parsing of personal data and sensitive information would not only be competitive and fair but would somehow lead to a more democratic society. Just let Facebook and Google, along with untold other players large and small, tap into the drip-drip of personal data following you around the internet, and in return you’ll get free personalized services and—through an alchemy that has never been adequately explained—a more democratized public sphere.

While these promises provided the ideological ballast for the tech revolution of the last decade or two, they turned out to be horribly wrong. There is nothing neutral, much less emancipatory, about our technological systems or the data sloshing through them. They record and shape the world in powerful, troubling ways. The recent clutch of stories, including in the New York Times and the Guardian, about Cambridge Analytica, the favored data firm of the Trump campaign, provides a humbling example of how personal data can be used to manipulate voter populations. This essential truth has been known at least since 2012, when a University of California-San Diego study found that a few nudges on Facebook appreciably increased voter turnout. From there, it’s only a small jump to isolating and bombarding millions of potential Trump voters with customized appeals, as Cambridge Analytica did.

In the final analysis, the author’s association of “scientific approaches” with technological triumphalism is just a very good reminder that “scientific approaches” don’t have morals built-in.

Finally, we must massively strengthen our scientific institutions. … The hard work of science gets done in these places and they must be among the best in the world.

Without specifying how ‘best’ or even ‘better’ needs to be measured, the task of strengthening institutes is at risk of being hijacked by the single-minded pursuit of better scores on ranking tables.

… Our best diaspora scientists should be provided generous support to come back to India and set up their research labs. Top scientific institutions must be granted the autonomy to govern themselves, hire the best faculty, attract great students from around the world, and pursue the best research. …

I once picked a fight with a scientist after he submitted a piece arguing that the Government of India should improve the supply of masks and other PPE to tame India’s tuberculosis burden. He couldn’t understand why I was opposed to publishing the piece, insisting he was “saying the rights things – the things that need to be said.” Here’s the thing: no one disagrees, and the dialogue has in fact moved leaps and bounds ahead. So while it may be the right thing to say, I’m not sure it needs to be said – much less deserves a thousand words. Put differently: You’re a minister, try moving the needle!

To that end, I have introduced a private members bill to grant IIM-level autonomy to the IITs that have been selected as institutions of eminence.

Okay… Is this what the article was about: to build support for your Bill? According to PRS, fewer than 4% of private members’ Bills were even discussed during the 14th Lok Sabha (i.e. Modi’s first term as prime minister). Why not build support within the party and introduce it as a government Bill?

Our civilisation is marked by its unending quest for knowledge, … The Mundaka Upanishad enlightens us: Satyameva Jayate – Truth alone triumphs. Our republic is based on this eternal principle.

Seriously, STAHP. 😂

‘Hunters’, sci-fi and pseudoscience

One of the ways in which pseudoscience is connected to authoritarian governments is through its newfound purpose and duty to supply an alternate intellectual tradition that subsumes science as well as culminates in the identitarian superiority of a race, culture or ethnic group. In return, aspects of the tradition are empowered by the regime both to legitimise it and to catalyse its adoption by the proverbial masses, tying faith in its precepts with agency, and of course giving itself divine sanction to rule.

The readers of this blog will recognise the spiritual features of Hindutva that the Bharatiya Janata Party regularly draws on that fit the bill. A German rocket scientist named Willy Ley who emigrated to the US before World War II published an essay entitled ‘Pseudoscience in Naziland’ in 1947, in which he describes the sort of crazy beliefs that prepared the ground with other conditions for the advent of Nazism.

In Hunters, the Amazon Prime show about Jewish Nazi-hunters in 1970s America, Edward Bulwer-Lytton’s sci-fi novel The Coming Race (1871) finds brief mention as a guiding text for neo-Nazis. In the novel, a subterranean race of angelic humanoids has acquired great power and superhuman abilities by manipulating a magical substance called Vril, and threatens to rise to the surface and destroy the human race one day.

Bulwer-Lytton also wrote that Vril alludes to electricity (i.e. the flow of electrons) and that The Coming Race is an allegory about how an older generation of people finds itself culturally and political incompatible with a new world order powered by electric power. (At the same time, he believed these forces were a subset of the aether, so to speak.) In a letter to John Forster on March 20, 1870 – precisely 150 years ago in twelve days – Bulwer-Lytton wrote:

I did not mean Vril for mesmerism, but for electricity, developed into uses as yet only dimly guessed, and including whatever there may be genuine in mesmerism, which I hold to be a mere branch current of the one great fluid pervading all nature. I am by no means, however, wedded to Vril, if you can suggest anything else to carry out this meaning – namely, that the coming race, though akin to us, has nevertheless acquired by hereditary transmission, etc., certain distinctions which make it a different species, and contains powers which we could not attain through a slow growth of time’ so that this race would not amalgamate with, but destroy us.

And yet this race, being in many respects better and milder than we are, ought not to be represented terrible, except through the impossibility of our tolerating them or they tolerating us, and they possess some powers of destruction denied to ourselves.

The collection of letters is available here.

In Bulwer-Lytton’s conception, higher technological prowess was born of hereditary traits. In a previous letter, dated March 15, Bulwer-Lytton had written to Forster:

The [manuscript] does not press for publication, so you can keep it during your excursion  and think over it among the other moonstricken productions which may have more professional demand on your attention. The only important point is to keen in view the Darwinian proposition that a coming race is destined to supplant our races, that such a race would be very gradually formed, and be indeed a new species developing itself out of our old one, that this process would be invisible to our eyes, and therefore in some region unknown to us.

So this is not a simple confusion or innocent ignorance. Bulwer-Lytton’s attribution of the invention of electricity to genetic ability was later appropriated by interwar German socialists.

This said, I’m not sure how much I can read into the reimagination of technological ability as a consequence of evolution or racial superiority because another part of Bulwer-Lytton’s letters suggests his example of electricity was incidental: “… in the course of the development [of the new species], the coming race will have acquired some peculiarities so distinct from our ways … and certain destructive powers which our science could not enable us to attain to, or cope with. Therefore, the idea of electrical power occurred to me, but some other might occur to you.”

Now, according to Ley, the Society for Truth believed Vril to be a real thing and used its existence to explain how the Britons created their empire. I don’t know how much stock Adolf Hitler and his “shites of the round table” (to quote from Hunters) placed in this idea but the parallels must have been inescapable – especially so since Ley also writes that not just any pseudoscientific belief could have supported Hitler’s rise nor have acquired his patronage. Instead, the beliefs had to be culturally specific to Germany, pandering to local folklore and provincialism.

Without commenting on whether this conclusion would apply to Fascism 2.0 in a world with the internet, civil aviation and computerised banking, and in naïve spite of history’s fondness for repeating itself and the politico-corporate-media complex, I wonder what lessons there are here – if any – for science educators, a people already caught between political anti-intellectualism and a stronger sense of their purpose in an intellectually debilitated society.

Dehumanising language during an outbreak

It appears the SARS-CoV-2 coronavirus has begun local transmission in India, i.e. infecting more people within the country instead of each new patient having recently travelled to an already affected country. The advent of local transmission is an important event in the lexicon of epidemics and pandemics because, at least until 2009, that’s how the WHO differentiated between the two.

As of today, the virus has become locally transmissible in the world’s two most populous countries. At this juncture, pretty much everyone expects the number of cases within India to only increase, and as it does, the public healthcare system won’t be the only one under pressure. Reporters and editors will be too, and they’re likely to be more stressed on one front: their readers.

For example, over the course of March 4, the following sentences appeared in various news reports of the coronavirus:

The Italian man infected 16 Italians, his wife and an Indian driver.

The infected techie boarded a bus to Hyderabad from Bengaluru and jeopardised the safety of his co-passengers.

Two new suspected coronavirus cases have been reported in Hyderabad.

All 28 cases of infection are being monitored, the health ministry has said.

Quite a few people on Twitter, and likely in other fora, commented that these lines exemplify the sort of insensitivity towards patients that dehumanises them, elides their agency and casts them as perpetrators – of the transmission of a disease – and which, perhaps given enough time and reception, could engender apathy and even animosity towards the poorer sick.

The problem words seem to include ‘cases’, ‘burden’ and ‘infected’. But are they a problem, really? I ask because though I understand the complaints, I think they’re missing an important detail.

Referring to people as if they were objects only furthers their impotency in a medical care setup in which doctors can’t be questioned and the rationale for diagnoses is frequently secreted – both conditions ripe for exploitation. At the same time, the public part of this system has to deal with a case load it is barely equipped for and whose workers are underpaid relative to their counterparts in the private sector.

As a result, a doctor seeing 10- or 20-times as many patients as they’ve been trained and supported to will inevitably precipitate some amount of dehumanisation, and it could in fact help medical workers cope with circumstances in which they’re doing all they can to help but the patient suffers anyway. So dehumanisation is not always bad.

Second, and perhaps more importantly, the word ‘dehumanise’ and the attitude ‘dehumanise’ can and often do differ. For example, Union home minister Amit Shah calling Bangladeshi immigrants “termites” is not the same as a high-ranking doctor referring to his patient in terms of their disease, and this doctor is not the same as an overworked nurse referring to the people in her care as ‘cases’. The last two examples are progressively more forgivable because their use of the English language is more opportunistic, and the nurse in the last example may not intentionally dehumanise their patients if they knew what their words meant.

(The doctor didn’t: his example is based on a true story.)

Problematic attitudes often manifest most prominently as problematic words and labels but the use of a word alone wouldn’t imply a specific attitude in a country that has always had an uneasy relationship with the English language. Reporters and editors who carefully avoid potentially debilitating language as well as those who carefully use such language are both in the minority in India. Instead, my experiences as a journalist over eight years suggest the majority is composed of people who don’t know the language is a problem, who don’t have the time, energy and/or freedom to think about casual dehumanisation, and who don’t deserve to be blamed for something they don’t know they’re doing.

But by fixating on just words, and not the world of problems that gives rise to them, we risk interrogating and blaming the wrong causes. It would be fairer to expect journalists of, say, the The Guardian or the Washington Post to contemplate the relationship between language and thought if only because Western society harbours a deeper understanding of the healthcare system it originated, and exported to other parts of the world with its idiosyncrasies, and because native English speakers are likelier to properly understand the relationship between a word, its roots and its use in conversation.

On the other hand, non-native users of English – particularly non-fluent users – have no option but to use the words ‘case’, ‘burden’ and ‘infected’. The might actually prefer other words if:

  • They knew that (and/or had to accommodate their readers’ pickiness for whether) the word they used meant more than what they thought it did, or
  • They knew alternative words existed and were equally valid, or
  • They could confidently differentiate between a technical term and its most historically, socially, culturally and/or technically appropriate synonym.

But as it happens, these conditions are seldom met. In India, English is mostly reserved for communication; it’s not the language of thought for most people, especially most journalists, and certainly doesn’t hold anything more than a shard of mirror-glass to our societies and their social attitudes as they pertain to jargon. So as such, pointing to a reporter and asking them to say ‘persons infected with coronavirus’ instead of ‘case’ will magically reveal neither the difference between ‘case’ or ‘infected’ the scientific terms and ‘case’ or ‘infected’ the pejoratives nor the negotiated relationship between the use of ‘case’ and dehumanisation. And without elucidating the full breadth of these relationships, there is no way either doctors or reporters are going to modify their language simply because they were asked to – nor will their doing so, on the off chance, strike at the real threats.

On the other hand, there is bound to be an equally valid problem in terms of those who know how ‘case’ and ‘infected’ can be misused and who regularly read news reports whose use of English may or may not intend to dehumanise. Considering the strong possibility that the author may not know they’re using dehumanising language and are unlikely to be persuaded to write differently, those in the know have a corresponding responsibility to accommodate what is typically a case of the unknown unknowns and not ignorance or incompetence, and almost surely not malice.

This is also why I said reporters and editors might be stressed by their readers, rather their perspectives, and not on count of their language.


A final point: Harsh Vardhan, the Union health minister and utterer of the words “The Italian man infected 16 Italians”, and Amit Shah belong to the same party – a party that has habitually dehumanised Muslims, Dalits and immigrants as part of its nationalistic, xenophobic and communal narratives. More recently, the same party from its place at the Centre suspected a prominent research lab of weaponising the Nipah virus with help from foreign funds, and used this far-fetched possibility as an excuse to terminate the lab’s FCRA license.

So when Vardhan says ‘infected’, I reflexively, and nervously, double-check his statement for signs of ambiguity. I’m also anxious that if more Italian nationals touring India are infected by SARS-CoV-2 and the public healthcare system slips up on control measures, a wave of anti-Italian sentiment could follow.

Ambivalent promises for S&T in the BJP manifesto

The Copernican
April 7, 2014

Even though they haven’t been in power for the last decade, the Bharatiya Janata Party (BJP) concedes no concrete assurances for science & technology in the country in its manifesto ahead of the 2014 Lok Sabha polls. However, these subjects are geared to be utilised for the benefit of other sectors in which specific promises feature aplenty. Indeed, the party’s S&T section of the manifesto reads like a bulleted list of the most popular problems for scientific research in India and the world, although that the party has taken cognizance of this-and-that is heartening.

The BJP makes no mention of increasing India’s spending on S&T while the Indian National Congress promises to do that to 2% of GDP, a long-standing demand. On the upside, however, both parties mention that they would like to promote private sector involvement in certain areas like agriculture, education, transportation and public infrastructure, but only the BJP mentions it in the context of scientific research.

As things stand, private sector involvement in scientific research in India is very low. A DST report from May 2013 claims that it would like to achieve 50-50 investment from public and private participants by 2017, while the global norm stands at 66-34 in favour of private. It is well-documented that higher private sector involvement, together with more interdisciplinary research, reduces the time for commercialization of technologies – which the BJP aspires to in its manifesto. However, the party doesn’t mention the sort of fiscal and policy benefits it will be willing to use to stimulate the private sector.

Apart from this, there are other vague aspirations, too. Sample the following.

  • Promotion of innovation by creating a comprehensive national system of innovation
  • Set [up] an institute of Big data and Analytics for studying the impact of big data across sectors for predictive science
  • Establish an Intellectual Property Rights Regime

Climate change

There is also mention of tackling climate change, with a bias toward the Himalayan region. Under the S&T section, there’s a point about establishing a “Central University dedicated to Himalayan technology”. With respect to conservation efforts, BJP proposes to “launch ‘National Mission on Himalayas’ as a unique programme of inter-governmental partnership, in coordinated policy making and capacity building across states and sectors”, not to mention promote tourism as well.

The BJP also says it would like to make the point of tackling climate change a part of its foreign policy. However, its proposed power generation strategy does also include coal, natural gas and oil, apart from wanting to maximise the potential of renewable energy sources. Moreover, it also promotes the use of carbon credits, which is an iffy idea as this is a very malleable system susceptible to abuse, especially by richer agents operating across borders.

“Take steps to increase the domestic coal exploration and production, to bridge the demand and supply gap. Oil and gas explorations would also be expedited in the country. This will also help to reduce the import bill.”

Until here, not much is different from what the Congress is already promising, albeit with different names.

The BJP appears to be very pro-nuclear. Under its ‘Cultural Heritage’ section, the manifesto mentions Ram Setu in the context of its vast thorium deposits. How this is part of our cultural heritage, I’m not sure. The party also proposes to build “world class, regional centres of excellence of scientific research” for nanotechnology, material sciences, “thorium technology” and brain research. Sure, India has thorium reserves, but the design for a thorium-based nuclear power plant came out only in February 2014, and an operational system is only likely to be ready by the end of this decade.

Troubling stuff

If spending doesn’t increase, these promises are meaningless. Moreover, there are also some pending Bills in the Lok Sabha concerning the setting up of new universities, as well as a materials science initiative named ISMER pending from 2011. With no concrete promises, will those initiatives set forth by the INC but not really followed through see the light of day?

In fact, two things trouble me.

  1. A no-mention of scientific research that is not aimed at improving the quality of life in a direct way, i.e. our space program, supercomputing capabilities, fundamental research, etc.
  2. How the private sector is likely to be motivated to invest in government-propelled R&D, to what extent, and if it will be allowed to enter sensitive areas like power generation.

Clearly, the manifesto is a crowd-pleaser, and to that end it has endeavoured to bend science to its will. In fact, there is nothing more troubling in the entire document than the BJP’s intention to “set up institutions and launch a vigorous program to standardize and validate the Ayurvedic medicine”. I get that they’re trying to preserve our historical traditions, etc., but this sounds like an agenda of the Minitrue to me.

And before this line comes the punchline: “We will start integrated courses for Indian System of Medicine (ISM) and modern science and Ayurgenomics.”