What can science education do, and what can it not?

On September 29, 2021, The Third Eye published an interview with Milind Sohoni, a teacher at the Centre for Technology Alternatives for Rural Areas and at IIT Bombay. (Thanks to @labhopping for bringing it into my feed.) I found it very thought-provoking. I’m pasting below some excerpts from the interview together with my notes. I think what Prof. Sohoni says doesn’t build up to a coherent whole. He is at times simplistic and self-contradictory, and what he says is often descriptive instead of offering a way out. Of course I don’t know whether what I say builds up to a coherent whole either but perhaps you’ll realise details here that I’ve missed.


… I wish the textbooks had exercises like let’s visit a bus depot, or let’s visit a good farmer and find out what the yields are, or let’s visit the PHC sub-centre, talk to the nurse, talk to the compounder, talk to the two doctors, just getting familiar with the PHC as something which provides a critical health service would have helped a lot. Or spend time with an ASHA worker. She has a notepad with names of people in a village and the diseases they have, which family has what medical emergency. How is it X village has so much diabetes and Y village has none?

I’m sure you’ll agree this would be an excellent way to teach science — together with its social dependencies instead of introducing the latter as an add-on at the level of higher, specialised education.

… science education is not just about big science, and should not be about big science. But if you look at the main central government departments populated by scientists, they are Space, Atomic Energy and Defence. Okay, so we have missile men and women, big people in science, but really, so much of science in most of the developed world is really sadak, bijli, pani.

I disagree on three counts. (i) Science education should include ‘big science’; if it doesn’t we lose access to a domain of knowledge and enterprise that plays an important role in future-proofing societies. We choose the materials with which we will build buildings, lay roads, and make cars and batteries and from which we will generate electric power based on ‘big science’. (ii) Then again, what is ‘big science’? I’m not clear what Sohoni means by that in this comment. But later in the interview he refers to Big Science as a source of “certainty” (vis-à-vis life today) delivered in the form of “scientific things … which we don’t understand”.

If by “Big Science” he means large scientific experiments that have received investments worth millions of dollars from multiple governments, and which are churning out results that don’t inform or enhance contemporary daily life, his statement seems all the more problematic. If a government invests some money in a Big Science project but then pulls out, it doesn’t necessarily or automatically redirect those funds to a project that a critic has deemed more worthwhile, like say multiple smaller science projects. Government support for Big Science has never operated that way. Further, Big Science frequently and almost by design inevitably leads to a lot of derivative ‘Smaller Science’, spinoff technologies, and advances in allied industries. Irrespective of whether these characteristics — accidental or otherwise — suffice to justify supporting a Big Science project, wanting to expel such science from science education is still reckless.

(iii) Re: “… so much of science in most of the developed world is really streets, electricity, water” — Forget proving/disproving this and ask yourself: how do we separate research in space, atomic energy, and defence from knowledge that gave rise to better roads, cheaper electricity, and cleaner water? We can’t. There is also a specific history that explains why each of these departments Sohoni has singled out were set up the way they were. And just because they are staffed with scientists doesn’t mean they are any good or worth emulating. (I’m also setting aside what Sohoni means by “much”. Time consumed in research? Money spent? Public value generated? Number of lives improved/saved?).

Our science education should definitely include Big Science: following up from the previous quote, teachers can take students to a radio observatory nearby and speak to the scientists about how the project acquired so much land, how it secured its water and power requirements, how administrators negotiated with the locals, etc. Then perhaps we can think about avoiding cases like the INO.

The Prohibition of Employment as Manual Scavengers Act came along ago, and along with it came a list of 42 [pieces of] equipment, which every municipality should have: a mask, a jetting machine, pumps and so on. Now, even IIT campuses don’t have that equipment. Is there any lab that has a ‘test mask’ even? Our men are going into talks and dying because of [lethal] fumes. A ‘test mask’ is an investment. You need a face-like structure and an artificial lung exposed to various environments to test its efficacy. And this mask needs to be standard equipment in every state. But these are things we never asked IITs to do, right?

This comment strikes a big nail on the head. It also brings to mind an incident on the Anna University campus eight years ago. To quote from Thomas Manuel’s report in The Wire on the incident: “On June 21, 2016, two young men died. Their bodies were found in a tank at the Anna University campus in Chennai. They were employees of a subcontractor who had been hired to seal the tank with rubber to prevent any leakage of air. The tank was being constructed as a part of a project by the Ministry of Renewable Energy to explore the possibilities of using compressed air to store energy. The two workers, Ramesh Shankar and Deepan, had arrived at the site at around 11.30 am and begun work. By 3.30 pm, when they were pulled out of the tank, Deepan was dead and Ramesh Shankar, while still breathing at the time, died a few minutes later.”

This incident seemed, and still seems, to say that even within a university — a place where scientists and students are keenly aware of the rigours of science and the value it brings to society — no one thinks to ensure the people hired for what is casually called “menial” labour are given masks or other safety equipment. The gaps in science education Sohoni is talking about are evident in the way scientists think about how they can ensure society is more rational. A society rife with preventable deaths is not rational.

I think what science does is that it claims to study reality. But most of reality is socially administered, and so we need to treat this kind of reality also as a part of science.

No, we don’t. We shouldn’t. Science offers a limited set of methods and analytical techniques with which people can probe and describe reality and organise the knowledge they generate. He’s right, most of reality is socially administered, but that shouldn’t be an invitation to forcibly bring what currently lies beyond science to within the purview of science. The scientific method can’t deal with them — but importantly it shouldn’t be expected to. Science is incapable of handling multiple, equally valid truths pertaining to the same set of facts. In fact a few paras later Sohoni ironically acknowledges that there are truths beyond science and that their existence shouldn’t trouble scientists or science itself:

… scientists have to accept that there are many things that we don’t know, and they still hold true. Scientists work empirically and sometimes we say okay, let’s park it, carry on, and maybe later on we will find out the ‘why’. The ‘why’ or the explanation is very cultural…

… whereas science needs that ‘why’, and needs it to be singular and specific. If these explanations for aspects of reality don’t exist in a form science can accommodate, yet we also insist as Sohoni did when he said “we need to treat this kind of reality also as a part of science”, then we will be forced to junk these explanations for no fault except that they don’t meet science’s acceptability criteria.

Perhaps there is a tendency here as if to say we need a universal theory of everything, but do we? We can continue to use different human intellectual and social enterprises to understand and take advantage of different parts of human experience. Science and for that matter the social sciences needn’t be, and aren’t, “everything”.

Science has convinced us, and is delivering on its promise of making us live longer. Whether those extra five years are of higher quality is not under discussion. You know, this is the same as people coming from really nice places in the Konkan to a slum in Mumbai and staying there because they want certainty. Life in rural Maharashtra is very hard. There’s more certainty if I’m a peon or a security guard in the city. I think that science is really offering some ‘certainty’. And that is what we seem to have accepted.

This seems to me to be too simplistic. Sohoni says this in reply to being asked whether science education today leans towards “technologies that are serving Big Business and corporate profits, rather than this developmental model of really looking critically at society”. And he would have been fairer to say we have many more technological devices and products around us today, founded on what were once scientific ideas, that serve corporate profits more than anything else. The French philosopher Jacques Ellul elucidated this idea brilliantly in his book The Technological Society (1964).

It’s just that Sohoni’s example of ageing is off the mark, and in the process it is harder to know what he’s really getting at. Lifespan is calculated as the average number of years an individual in a particular population lives. It can be improved by promoting factors that help our bodies become more resilient and by dissuading factors that cause us to die sooner. If lifespan is increasing today, it’s because fewer babies are succumbing to vaccine-preventable diseases before they turn five, because there are fewer road accidents thanks to vehicle safety, and because novel treatments like immunotherapy are improving the treatment rates of various cancers. Any new scientific knowledge in the prevailing capitalist world-system is susceptible to being coopted by Big Business but I’m also glad the knowledge exists at all.

Sure, we can all live for five more years on average, but if those five years will be spent in, say, the humiliating conditions of palliative care, let’s fix that problem. Sohoni says science has strayed from that path and I’m not so sure — but I’m convinced there’s enough science to go around (and enough money for it, just not the political will): scientists can work on both increasing lifespan and improving the conditions of palliative care. We shouldn’t vilify one kind of science in order to encourage the other. Yet Sohoni persists with this juxtaposition as he says later:

… we are living longer, we are still shitting on the road or, you know, letting our sewage be cleaned by fellow humans at the risk of death, but we are living longer. And that is, I think, a big problem.

We are still shitting on the road and we are letting our sewage be cleaned by fellow humans at the risk of death. These are big problems. Us living longer is not a big problem.

Big Technology has a knack of turning us all into consumers of science, by neutralising questions on ‘how’ and ‘why’ things work. We accept it and we enjoy the benefits. But see, if you know the benefits are divided very unevenly, why doesn’t it bother us? For example, if you buy an Apple iPhone for Rs. 75,000 how much does the actual makers of the phone (factory workers) get? I call it the Buddhufication Crisis: a lot of people are just hooked on to their smartphones, and live in a bubble of manufactured certainty; and the rest of society that can’t access smartphones, is left to deal with real-world problems.

By pushing us to get up, get out, and engage with science where it is practised, a better science education can inculcate a more inquisitive, critical-thinking population that applies the good sense that comes of a good education to more, or all, aspects of society and social living. This is why Big Technology in particular does not tempt us into becoming “consumers” of science rather than encouraging us to pick at its pieces. Practically everything does. Similarly Sohoni’s “Buddhufication” description is muddled. Of course it’s patronising towards the people who create value — especially if it is new and/or takes unexpected forms — out of smartphones and use it as a means of class mobility, and seems to suggest a person striving for any knowledge other than of the scientific variety is being a “buddhu”. And what such “buddhufication” has to do with the working conditions of Apple’s “factory workers” is unclear.

Speaking of relationships:

Through our Public Health edition, we also seem to sit with the feeling that science is not serving rural areas, not serving the poor. In turn, there is also a lower expectation of science from the rural communities. Do you feel this is true?

Yes, I think that is true to a large extent. But it’s not to do with rural. You see, for example, if you look at western Maharashtra — the Pune-Nashik belt — some of the cleverest people live there. They are basically producing vegetables for the big urban markets: in Satara, Sangli, that entire irrigated area. And in fact, you will see that they are very careful about their future, and understand their place in society and the role of the state. And they expect many things from the state or the government; they want things to work, hospitals to work, have oxygen, etc. And so, it is really about the basic understanding of cause and effect of citizenship. They understand what is needed to make buses work, or hospitals function; they understand how the state works. This is not very different from knowing how gadgets work.

While the distinction to many others may be trivial, “science” and “scientists” are not the same thing. This equation is present throughout the interview. At first I assumed it was casual and harmless but at this point, given the links between science, science education, technology, and public welfare that Sohoni has tried to draw, the distinction is crucial here. Science is already serving rural areas — Sohoni says as much in the comment here and the one that follows. But many, or maybe most, scientists may not be serving rural areas, if only so we can also acknowledge that some scientists are also serving rural areas. “Science is not serving rural areas” would mean no researcher in the country — or anywhere, really — has brought the precepts of science to bear on the problems of rural India. This is just not true. On the other hand saying “most scientists are not serving rural areas” will tell us some useful scientific knowledge exists but (i) too few scientists are working on it (i.e. mindful of the local context) and (ii) there are problems with translating it from the lab bench to its application in the field, at ground zero.

This version of this post benefited from inputs from and feedback by Prathmesh Kher.

“Why has no Indian won a science Nobel this year?”

For all their flaws, the science Nobel Prizes – at the time they’re announced, in the first week of October every year – provide a good opportunity to learn about some obscure part of the scientific endeavour with far-reaching consequences for humankind. This year, for example, we learnt about attosecond physics, quantum dots, and invitro transcribed mRNA. The respective laureates had roots in Austria, France, Hungary, Russia, Tunisia, and the U.S. Among the many readers that consume articles about these individuals’ work with any zest, the science Nobel Prizes’ announcement is also occasion for a recurring question: how come no scientist from India – such a large country, of so many people with diverse skills, and such heavy investments in research – has won a prize? I thought I’d jot down my version of the answer in this post. There are four factors:

1. Missing the forest for the trees – To believe that there’s a legitimate question in “why has no Indian won a science Nobel Prize of late?” is to suggest that we don’t consider what we read in the news everyday to be connected to our scientific enterprise. Pseudoscience and misinformation are almost everywhere you look. We’re underfunding education, most schools are short-staffed, and teachers are underpaid. R&D allocations by the national government have stagnated. Academic freedom is often stifled in the name of “national interest”. Students and teachers from the so-called ‘non-upper-castes’ are harassed even in higher education centres. Procedural inefficiencies and red tape constantly delay funding to young scholars. Pettiness and politicking rule many universities’ roosts. There are ill-conceived limits on the use, import, and export of biological specimens (and uncertainty about the state’s attitude to it). Political leaders frequently mock scientific literacy. In this milieu, it’s as much about having the resources to do good science as being able to prioritise science.

2. Historical backlog – This year’s science Nobel Prizes have been awarded for work that was conducted in the 1980s and 1990s. This is partly because the winning work has to have demonstrated that it’s of widespread benefit, which takes time (the medicine prize was a notable exception this year because the pandemic accelerated the work’s adoption), and partly because each prize most often – but not always – recognises one particular topic. Given that there are several thousand instances of excellent scientific work, it’s possible, on paper, for the Nobel Prizes to spend several decades awarding scientific work conducted in the 20th century alone. Recall that this was a boom time for science, with the advent of quantum mechanics and the theories of relativity, considerable war-time investment and government support, followed by revolutions in electronics, materials science, spaceflight, genetics, and pharmaceuticals, and then came the internet. It was also the time when India was finding its feet, especially until economic liberalisation in the early 1990s.

3. Lack of visibility of research – Visibility is a unifying theme of the Nobel laureates and their work. That is, you need to do good work as well as be seen to be doing that work. If you come up with a great idea but publish it in an obscure journal with no international readership, you will lose out to someone who came up with the same idea but later, and published it in one of the most-read journals in the world. Scientists don’t willingly opt for obscure journals, of course: publishing in better-read journals isn’t easy because you’re competing with other papers for space, the journals’ editors often have a preference for more sensational work (or sensationalisable work, such as a paper co-authored by an older Nobel laureate; see here), and publishing fees can be prohibitively high. The story of Meghnad Saha, who was nominated for a Nobel Prize but didn’t win, offers an archetypal example. How journals have affected the composition of the scientific literature is a vast and therefore separate topic, but in short, they’ve played a big part to skew it in favour of some kinds of results over others – even if they’re all equally valuable as scientific contributions – and to favour authors from some parts of the world over others. Journals’ biases sit on top of those of universities and research groups.

4. Award fixation – The Nobel Prizes aren’t interested in interrogating the histories and social circumstances in which science (that it considers to be prize-worthy) happens; they simply fete what is. It’s we who must grapple with the consequences of our histories of science, particularly science’s relationship with colonialism, and make reparations. Fixating on winning a science Nobel Prize could also lock our research enterprise – and the public perception of that enterprise – into a paradigm that prefers individual winners. The large international collaboration is a good example: When physicists working with the LHC found the Higgs boson in 2012, two physicists who predicted the particle’s existence in 1964 won the corresponding Nobel Prize. Similarly, when scientists at the LIGO detectors in the US first observed gravitational waves in 2016, three physicists who conceived of LIGO in the 1970s won the prize. Yet the LHC and the LIGOs, and other similar instruments continue to make important contributions to science – directly, by probing reality, and indirectly by supporting research that can be adapted for other fields. One 2007 paper also found that Nobel Prizes have been awarded to inventions only 23% of the time. Does that mean we should just focus on discoveries? That’s a silly way of doing science.


The Nobel Prizes began as the testament of a wealthy Swedish man who was worried about his legacy. He started a foundation that put together a committee to select winners of some prizes every year, with some cash from the man’s considerable fortunes. Over the years, the committee made a habit of looking for and selecting some of the greatest accomplishments of science (but not all), so much so that the laureates’ standing in the scientific community created an aspiration to win the prize. Many prizes begin like the Nobel Prizes did but become irrelevant because they don’t pay enough attention to the relationship between the laureate-selecting process and the prize’s public reputation (note that the Nobel Prizes acquired their reputation in a different era). The Infosys Prize has elevated itself in this way whereas the Indian Science Congress’s prize has undermined itself. India or any Indian for that matter can institute an award that chooses its winners more carefully, and gives them lots of money (which I’m opposed to vis-à-vis senior scientists) to draw popular attention.

There are many reasons an Indian hasn’t won a science Nobel Prize in a while but it’s not the only prize worth winning. Let’s aspire to other, even better, ones.

What arguments against the ‘next LHC’ say about funding Big Physics

A few days ago, a physicist (and PhD holder) named Thomas Hartsfield published a strange article in Big Think about why building a $100-billion particle physics machine like the Large Hadron Collider (LHC) is a bad idea. The article was so replete with errors things that even I – a not-physicist and not-a-PhD-holder – cringed reading them. I also wanted to blog about the piece but theoretical physicist Matthew Strassler beat me to it, with a straightforward post about the many ways in which Hartsfield’s article was just plain wrong, especially coming from a physicist. But I also think there were some things that Strassler either overlooked or left unsaid and which to my mind bear fleshing out – particularly points that have to do with the political economy of building research machines like the LHC. I also visit in the end the thing that really made me want to write this post, in response to a seemingly throwaway line in Strassler’s post. First, the problems that Hartsfield’s piece throws up and which deserve more attention:

1. One of Hartsfield’s bigger points in his article is that instead of spending $100 billion on one big physics project, we could spend it on 100,000 smaller projects. I agree with this view, sensu lato, that we need to involve more stakeholders than only physicists when contemplating the need for the next big accelerator or collider. However, in making the argument that the money can be redistributed, Hartsfield presumes that a) if a big publicly funded physics project is cancelled, the allocated money that the government doesn’t spend as a result will subsequently be diverted to other physics prohects, and b) this is all the money that we have to work with. Strassler provided the most famous example of the fallacy pertinent to (a): the Superconducting Super Collider in the US, whose eventually cancellation ‘freed’ an allocation of $4.4 billion, but the US government didn’t redirect this money back into other physics research grants. (b), on the other hand, is a more pernicious problem: a government allocating $100 billion for one project does not implicitly mean that it can’t spare $10 million for a different project, or projects. Realpolitik is important here. Politicians may contend that after having approved $100 billion for one project, it may not be politically favourable for them to return to Congress or Parliament or wherever with another proposal for $10 million. But on the flip side, both mega-projects and many physics research items are couched in arguments and aspirations to improve bilateral or multilateral ties (without vomiting on other prime ministers), ease geopolitical tensions, score or maintain research leadership, increase research output, generate opportunities for long-term technological spin-offs, spur local industries, etc. Put another way, a Big Science project is not just a science project; depending on the country, it could well be a national undertaking along the lines of the Apollo 11 mission. These arguments matter for political consensus – and axiomatically the research projects that are able to present these incentives are significantly different from those that aren’t, which in turn can help fund both Big Science and ‘Small Science’ projects at the same time. The possibility exists. For example, the Indian government has funded Gaganyaan separately from ISRO’s other activities. $100 billion isn’t all the money that’s available, and we should stop settling for such big numbers when they are presented to us.

2. These days, big machines like the one Hartsfield has erected as a “straw man” – to use Strassler words – aren’t built by individual countries. They are the product of an international collaboration, typically with dozens of governments, hundreds of universities and thousands of researchers participating. The funds allocated are also spent over many years, even decades. In this scenario, when a $100-billion particle collider is cancelled, no one entity in the whole world suddenly has that much money to give away at any given moment. Furthermore, in big collaborations, countries don’t just give money; often they add value by manufacturing various components, leasing existing facilities, sharing both human and material resources, providing loans, etc. The value of each of these contracts is added to the total value of the project. For example, India has been helping the LHC by manufacturing and supplying components related to the machine’s magnetic and cryogenic facilities. Let’s say India’s Departments of Science and Technology and of Atomic Energy had inked contracts with CERN, which hosts and maintains the LHC, worth $10 million to make and transport these components, but then the LHC had been called off just before its construction was to begin. Does this mean India would have had $10 million to give away to other science projects? Not at all! In fact, manufacturers within the country would have been bummed about losing the contracts.

3. Hartsfield doesn’t seem to acknowledge incremental results, results that improve the precision of prior measurements and results that narrow the range in which we can find a particle. Instead, he counts only singularly positive, and sensational, results – of which the LHC has had only one: the discovery of the Higgs boson in 2012. Take all of them together and the LHC will suddenly seem more productive. Simply put, precision-improving results are important because even a minute difference between the theoretically predicted value and the observed value could be a significant discovery that opens the door to ‘new physics’. We recently saw this with the mass of a subatomic particle called the W boson. Based on the data collected by a detector mounted on the Tevatron particle accelerator in Illinois, physicists found that the mass of the W boson differed from the predicted value by around 0.12%. This was sufficient to set off a tsunami of excitement and speculation in the particle physics community. (Hartsfield also overlooked an important fact and which Strassler caught: that the LHC collects a lot more data than physicists can process in a single year, which means that when the LHC winds down, physicists will still have many years of work left before they are done with the LHC altogether. This is evidently still happening with the Tevatron, which was shut down in 2011, so Hartsfield missing it is quite weird. Another thing that happened to Tevatron and is still happening with the LHC is that these machines are upgraded over time to produce better results.) Similarly, results that exclude the energy ranges in which a particle can be found are important because they tell us what kind of instruments we should build in future to detect the same particle. We obviously won’t need instruments that sweep the same energy range (nor will we have a guarantee that the particle will be found outside the excluded energy range – that’s a separate problem). There is another point to be made but which may not apply to CERN as much as to Big Science projects in other countries: one country’s research community building and operating a very large research facility signals to other countries that the researchers know what they’re doing and that they might be more deserving of future investments than other candidates with similar proposals. This is one of the things that India lost with the scuttling of the India-based Neutrino Observatory (the loss itself was deserved, to be sure).

Finally, the statement in Strassler’s post that piqued me the most:

My impression, from his writing and from what I can find online, is that most of what he knows about particle physics comes from reading people like Ethan Siegel and Sabine Hossenfelder. I think Dr. Hartsfield would have done better to leave the argument to them.

Thomas Hartsfield has clearly done a shoddy job in his article in the course of arguing against a Big Physics machine like LHC in the future, but his screwing up doesn’t mean discussions on the need for the next big collider should be left to physicists. I admit that Strassler’s point here was probably limited to the people whose articles and videos were apparently Hartsfield’s primary sources of information – but it also seemed to imply that instead of helping those who get things wrong do better next time, it’s okay to ask them to not try again and instead leave the communication efforts to their primary sources. That’s Ethan Siegel and Sabine Hossenfelder in this case – both prolific communicators – but in many instances, bad articles are written by writers who bothered to try while their sources weren’t doing more or better to communicate to the people at large. This is also why it bears repeating that when it comes to determining the need for a Big Physics project of the likes of the LHC, physics is decidedly one non-majority part of it and that – importantly – science communicators also have an equally vital role to play. Let me quote here from an article by physicist Nirmalya Kajuri, published in The Wire Science in February 2019:

… the few who communicate science can have a lopsided influence on the public perception of an entire field – even if they’re not from that field. The distinction between a particle physicist and, say, a condensed-matter physicist is not as meaningful to most people reading the New York Times or any other mainstream publication as it is to physicists. There’s no reason among readers to exclude [one physicist] as an expert.

However, very few physicists engage in science communication. The extreme ‘publish or perish’ culture that prevails in sciences means that spending time in any activity other than research carries a large risk. In some places, in fact, junior scientists spending time popularising science are frowned upon because they’re seen to be spending time on something unproductive.

All physicists agree that we can’t keep building colliders ad infinitum. They differ on when to quit. Now would be a good time, according to Hossenfelder. Most particle physicists don’t think so. But how will we know when we’ve reached that point? What are the objective parameters here? These are complex questions, and the final call will be made by our ultimate sponsors: the people.

So it’s a good thing that this debate is playing out before the public eye. In the days to come, physicists and non-physicists must continue this dialogue and find mutually agreeable answers. Extensive, honest science communication will be key.

So more physicists should join in the fray, as should science journalists, writers, bloggers and communicators in general. Just that they should also do better than Thomas Hartsfield to get the details right.

On resource constraints and merit

In the face of complaints about how so few women have been awarded this year’s Swarnajayanti Fellowships in India, some scientists pushed back asking which of the male laureates who had been selected should have been left out instead.

This is a version of the merit argument commonly applied to demands for reservation and quota in higher education – and it’s also a form of an argument that often raises its head in seemingly resource-constrained environments.

India is often referred to as a country with ‘finite’ resources, often when people are discussing how best to put these resources to use. There are even romantic ideals associated with working in such environments, such as doing more with less – as ISRO has been for many decades – and the popular concept of jugaad.

But while fixing one variable while altering the other would make any problem more solvable, it’s almost always the resource variable that is presumed to be fixed in India. For example, a common refrain is that ISRO’s allocation is nowhere near that of NASA, so ISRO must figure how best to use its limited funds – and can’t afford luxuries like a full-fledged outreach team.

There are two problems in the context of resource availability here: 1. an outreach team proper is implied to be the product of a much higher allocation than has been made, i.e. comparable to that of NASA, and 2. incremental increases in allocation are precluded. Neither of these is right, of course: ISRO doesn’t have to wait for NASA’s volume of resources in order to set up an outreach team.

The deeper issue here is not that ISRO doesn’t have the requisite funds but that it doesn’t feel a better outreach unit is necessary. Here, it pays to acknowledge that ISRO has received not inconsiderable allocations over the years, as well as has enjoyed bipartisan support and (relative) freedom from bureaucratic interference, so it cops much of the blame as well. But in the rest of India, the situation is flipped: many institutions, and their members, have fewer resources than they have ideas and that affects research in a way of its own.

For example, in the context of grants and fellowships, there’s the obvious illusory ‘prestige constraint’ at the international level – whereby award-winners and self-proclaimed hotshots wield power by presuming prestige to be tied to a few accomplishments, such as winning a Nobel Prize, publishing papers in The Lancet and Nature or maintaining an h-index of 150. These journals and award-giving committees in turn boast of their selectiveness and elitism. (Note: don’t underestimate the influence of these journals.)

Then there’s the financial constraint for Big Science projects. Some of them may be necessary to keep, say, enthusiastic particle physicists from being carried away. But more broadly, a gross mismatch between the availability of resources and the scale of expectations may ultimately be detrimental to science itself.

These markers of prestige and power are all essentially instruments of control – and there is no reason this equation should be different in India. Funding for science in India is only resource-constrained to the extent to which the government, which is the principal funder, deems it to be.

The Indian government’s revised expenditure on ‘scientific departments’ in 2019-2020 was Rs 27,694 crore. The corresponding figure for defence was Rs 3,16,296 crore. If Rs 1,000 crore were moved from the latter to the former, the defence spend would have dropped only by 0.3% but the science spend would have increased by 3.6%. Why, if the money spent on the Statue of Unity had instead been diverted to R&D, the hike would have nearly tripled.

Effectively, the argument that ‘India’s resources are limited’ is tenable only when resources are constrained on all fronts, or specific fronts as determined by circumstances – and not when it seems to be gaslighting an entire sector. The determination of these circumstances in turn should be completely transparent; keeping them opaque will simply create more ground for arbitrary decisions.

Of course, in a pragmatic sense, it’s best to use one’s resources wisely – but this position can’t be generalised to the point where optimising for what’s available becomes morally superior to demanding more (even as we must maintain the moral justification of being allowed to ask how much money is being given to whom). That is, constantly making the system work more efficiently is a sensible aspiration, but it shouldn’t come – as it often does at the moment, perhaps most prominently in the case of CSIR – at the cost of more resources. If people are discontented because they don’t have enough, their ire should be directed at the total allocation itself more than how a part of it is being apportioned.

In a different context, a physicist had pointed out a few years ago that when the US government finally scrapped the proposed Superconducting Supercollider in the early 1990s, the freed-up funds weren’t directed back into other areas of science, as scientists thought they would be. (I couldn’t find the link to this comment nor recall the originator – but I think it was either Sabine Hossenfelder or Sean Carroll; I’ll update this post when I do.) I suspect that if the group of people that had argued thus had known this would happen, it might have argued differently.

I don’t know if a similar story has played out in India; I certainly don’t know if any Big Science projects have been commissioned and then scrapped. In fact, the opposite has happened more often: whereby projects have done more with less by repurposing an existing resource (examples herehere and here). (Having to fight so hard to realise such mega-projects in India could be motivating those who undertake one to not give up!)

In the non-Big-Science and more general sense, an efficiency problem raises its head. One variant of this is about research v. teaching: what does India need more of, or what’s a more efficient expense, to achieve scientific progress – institutions where researchers are free to conduct experiments without being saddled with teaching responsibilities or institutions where teaching is just as important as research? This question has often been in the news in India in the last few years, given the erstwhile HRD Ministry’s flip-flops on whether teachers should conduct research. I personally agree that we need to ‘let teachers teach’.

The other variant is concerned with blue-sky research: when are scientists more productive – when the government allows a “free play of free intellects” or if it railroads them on which problems to tackle? Given the fabled shortage of teachers at many teaching institutions, it’s easy to conclude that a combination of economic and policy decisions have funnelled India’s scholars into neglecting their teaching responsibilities. In turn, rejigging the fraction of teaching or teaching-cum-research versus research-only institutions in India in favour of the former, which are less resource-intensive, could free up some funds.

But this is also more about pragmatism than anything else – somewhat like untangling a bundle of wires before straightening them out instead of vice versa, or trying to do both at once. As things stand, India’s teaching institutions also need more money. Some reasons there is a shortage of teachers include the fact that they are often not paid well or on time, especially if they are employed at state-funded colleges; the institutions’ teaching facilities are subpar (or non-existent); if jobs are located in remote places and the institutions haven’t had the leeway to consider upgrading recreational facilities; etc.

Teaching at the higher-education level in India is also harder because of the poor state of government schools, especially outside tier I cities. This brings with it a separate raft of problems, including money.

Finally, a more ‘local’ example of prestige as well as financial constraints that also illustrates the importance of this PoV is the question of why the Swarnajayanti Fellowships have been awarded to so few women, and how this problem can be ‘fixed’.

If the query about which men should be excluded to accommodate women sounds like a reasonable question – you’re probably assuming that the number of fellows has to be limited to a certain number, dictated in turn by the amount of money the government has said can be awarded through these fellowships. But if the government allocated more money, we could appreciate all the current laureates as well as many others, and arguably without diluting the ‘quality’ of the competition (given just how many scholars there are).

Resource constraints obviously can’t explain or resolve everything that stands in the way of more women, trans-people, gender-non-binary and gender-non-conforming scholars receiving scholarships, fellowships, awards and prominent positions within academia. But axiomatically, it’s important to see that ‘fixing’ this problem requires action on two fronts, instead of just one – make academia less sexist and misogynistic and secure more funds. The constraints are certainly part of the problem, particularly when they are wielded as an excuse to concentrate more resources, and more power, in the hands of the already privileged, even as the constraints may not be real themselves.

In the final analysis, science doesn’t have to be a powerplay, and we don’t have to honour anyone at the expense of another. But deferring to such wisdom could let the fundamental causes of this issue off the hook.

Big science, bigger nationalism.

Nature India ran a feature on March 21 about three Indian astrophysicists who had contributed to the European Space Agency’s Planck mission that studied the universe’s CMBR, etc. I was wary even before I started to read it. Why? Because of that first farce in July, 2012, that’s why.

That was when many Indians called for the ‘boson’ in the ‘Higgs boson’ to be celebrated with as much jest as was the ‘Higgs’. Oddly, Kolkata sported no cultural drapes that took ownership of the ‘boson’ as opposed to Edinburgh, quick to embrace the ‘Higgs’.

Why? Because a show of Indians celebrating India’s contributions to science through claims of ownership betrays that it’s not a real sense of ownership at all, but just another attempt to hog the limelight. If we wanted to own the ‘boson’ in honor of Satyendra Nath Bose, we’d have ensured he was remembered by the common man even outside the context of the Higgs boson. For his work with Einstein in establishing the Bose-Einstein statistics, for starters.

This is an attitude I find divisive and abhorrent. At the least, that circumstantial shout-out leaves no cause to remember S.N. Bose for the rest of the time. At the most, it paints a false picture of what ownership of scientific knowledge manifests itself as in the 21st century. The Indian contribution, the Chilean contribution, the Russian contribution… these are divisive tendencies in a world constantly aspiring to Big Science that is more seamless and painless.

Ownership of scientific knowledge in the 21st century, I believe, cannot be individuated. It belongs to no one and everyone at the same time. In the past, using science-related decorations to impinge upon our contributions to science may have inspired someone to believe we did good. Today, however, it’s simply taking a stand on a very slippery slope.

I understand how scientific achievement in the last century or so had gained a colonial attitude, and how there are far more Indians who have received the Nobel Prize as Americans than as Indians themselves. However, the scientific method has also gotten more rigorous, more demanding in terms of resources and time. While America may have shot ahead in the last century of scientific achievement, awareness of its possession of numerous individuals on the rosters of academic excellence is coeval tribute to some other country’s money and intellectual property, too.

I understand how news items of a nation’s contributions to an international project could improve the public’s perception of where and how their tax-money is being spent. However, the alleviation of any ills in this area must not arise solely from the notification that a contribution was made. It should arise through a dissemination of the importance of that contribution, too. The latter is conspicuous by its absence… to me, at least.

We put faces to essentially faceless achievements and then forget their features over time.

I wish there had been an entity to point my finger at. It could’ve been just the government, it could’ve been just a billion Indians. It could’ve been just misguided universities. It could’ve been just the Indian media. Unfortunately, it’s a potent mix of all these possibilities, threatening to blow up with nationalistic fervor in a concordant world.

As for that Nature India article, it did display deference to the jingoism. How do I figure? Because its an asymmetric celebration of achievement, especially an achievement not rooted in governmental needs even.

~

This post also appeared in ‘The Copernican’ science blog at The Hindu on March 28, 2013.