The billionaire’s solution to climate change

On May 3, Bloomberg published a profile of Salesforce CEO Marc Benioff’s 1t.org project to plant or conserve one trillion trees around the world in order to sequester 200 gigatonnes of carbon every year. The idea reportedly came to Benioff from Thomas Crowther’s infamous September 2015 paper in Nature that claimed restoring trees was the world’s best way to ‘solve’ climate change.

Following pointed criticism of the paper’s attitude and conclusions, they were revised to a significant extent in October 2019 to tamper predictions about the carbon sequestration potential of the world’s trees and to withdraw its assertion that no other solution could work better than planting and/or restoring trees.

According to Bloomberg’s profile, Benioff’s 1t.org initiative seems to be faltering as well, with unreliable accounting of the pledges companies submitted to 1t.org and, unsurprisingly, many of these companies engaging in shady carbon-credit transactions. This is also why Jane Goodall’s comment in the article is disagreeable: it isn’t better for these companies to do something vis-à-vis trees than nothing at all because the companies are only furthering an illusion of climate action — claiming to do something while doing nothing at all — and perpetuating the currency of counterproductive ideas like carbon-trading.

A smattering of Benioff’s comments to Bloomberg are presented throughout the profile, as a result of which he might come across like a sage figure — but take them together, in one go, and he sounds actually like a child.

“I think that there’s a lot of people who are attacking nature and hate nature. I’m somebody who loves nature and supports nature.”

This comment follows one by “the climate and energy policy director at the Union of Concerned Scientists”, Rachel Cleetus, that trees “should not be seen as a substitute for the core task at hand here, which is getting off fossil fuels.” But in Bloomberg’s telling, Cleetus is a [checks notes] ‘nature hater’. Similarly, the following thoughtful comment is Benioff’s view of other scientists who criticised the Crowther et al. paper:

“I view it as nonsense.”

Moving on…

“I was in third grade. I learned about photosynthesis and I got it right away.”

This amazing quote appears as the last line of a paragraph; the rest of it goes thus: “Slashing fossil fuel consumption is critical to slowing warming, but scientists say we also need to pull carbon that’s already in the air back out of it. Trees are really good at that, drawing in CO2 and then releasing oxygen.” Then Benioff’s third-grade quote appears. It’s just comedy.

His other statements make for an important reminder of the oft-understated purpose of scientific communication. Aside from being published by a ‘prestige’ journal — Nature — the Crowther et al. paper presented an easy and straightforward solution to reducing the concentration of atmospheric carbon: to fix lots and lots of trees. Even without knowing the specific details of the study’s merits, any environmental scientist in South and Southeast Asia, Africa, and South America, i.e. the “Global South”, would have said this is a terrible idea.

“I said, ‘What? One trillion trees will sequester more than 200 gigatons of carbon? We have to get on this right now. Who’s working on this?’”

“Everybody agreed on tree diplomacy. I was in shock.”

“The greatest, most scalable technology we have today to sequester carbon is the tree.”

The countries in these regions have become sites of aggressive afforestation that provide carbon credits for the “Global North” to encash as licenses to keep emitting carbon. But the flip sides of these exercises are: (i) only some areas are naturally amenable to hosting trees, and it’s not feasible to plant them willy-nilly through ecosystems that don’t naturally support them; (ii) unless those in charge plant native species, afforestation will only precipitate local ecosystem decline, which will further lower the sequestration potential; (iii) unafforested land runs the risk of being perceived as ‘waste land’, sidelining the ecosystem services provided by wetlands, deserts, grasslands, etc.; and (iv) many of these countries need to be able to emit more carbon before being expected to reach net-zero, in order to pull their populations out of poverty and become economically developed — the same right the “Global North” countries had in the 19th and 20th centuries.

Scientists have known all this from well before the Crowther et al. paper turned up. Yet Benioff leapt for it the moment it appeared, and was keen on seeing it to its not-so-logical end. It’s impossible to miss the fact that his being worth $10 billion didn’t encourage him to use all that wealth and his clout to tackle the more complex actions in the soup of all actions that make up humankind’s response to climate change. Instead, he used his wealth to go for an easy way out, while dismissing informed criticism of it as “nonsense”

In fact, a similar sort of ‘ease-seeking’ is visible in the Crowther et al. paper as well, as brought out in a comment published by Veldman et al. In response to this, Crowther et al. wrote in October 2019 that their first paper simply presented value-neutral knowledge and that it shouldn’t be blamed for how it’s been construed:

Veldman et al. (4) criticize our results in dryland biomes, stating that many of these areas simply should not be considered suitable for tree restoration. Generally, we must highlight that our analysis does not ever address whether any actions “should” or “should not” take place. Our analysis simply estimated the biophysical limits of global forest growth by highlighting where trees “can” exist.

In fact, the October 2019 correction to Crowther et al., in which the authors walked back on the “trees are the best way” claim, was particularly important because it has come to mirror the challenges Benioff has found himself facing through 1t.org: it isn’t just that there are other ways to improve climate mitigation and adaptation, it’s that those ways are required, and giving up on them for any reason could never be short of a moral hazard, if not an existential one.

Featured image credit: Dawid Zawiła/Unsplash.

Christopher Nolan’s explosion

In May, Total Film reported that the production team of Tenet, led by director Christopher Nolan, found that using a second-hand Boeing 747 was better than recreating a scene involving an exploding plane with miniatures and CGI. I’m not clear how exactly it was better; Total Film only wrote:

“I planned to do it using miniatures and set-piece builds and a combination of visual effects and all the rest,” Nolan tells TF. However, while scouting for locations in Victorville, California, the team discovered a massive array of old planes. “We started to run the numbers… It became apparent that it would actually be more efficient to buy a real plane of the real size, and perform this sequence for real in camera, rather than build miniatures or go the CG route.”

I’m assuming that by ‘numbers’ Nolan means the finances. That is, buying and crashing a life-size airplane was more financially efficient than recreating the scene with other means. This is quite the disappointing prospect, as must be obvious, because this calculation limits itself to a narrow set of concerns, or just one as in this case – more bang for the buck – and consigns everything else to being negative externalities. Foremost on my mind is carbon emissions from transporting the vehicle, the explosion and the debris. If these costs were factored in, for example in terms of however much the carbon credits would be worth in the region where Nolan et al filmed the explosion, would the numbers have still been just as efficient? (I’m assuming, reasonably I think, that Nolan et al aren’t using carbon-capture technologies.)

However, CGI itself may not be so calorifically virtuous. I’m too lazy in this moment to cast about on the internet for estimates of how much of the American film industry’s emissions CGI accounts for. But I did find this tidbit from 2018 on Columbia University’s Earth Institute blog:

For example, movies with a budget of $50 million dollars—including such flicks as Zoolander 2, Robin Hood: Prince of Thieves, and Ted—typically produce the equivalent of around 4,000 metric tons of CO2. That’s roughly the weight of a giant sequoia tree.

A ‘green production guide’ linked there leads to a page offering an emissions calculator that doesn’t seem to account for CGI specifically; only broadly “electricity, natural gas & fuel oil, vehicle & equipment fuel use, commercial flights, charter flights, hotels & housing”. In any case, I had a close call with bitcoin-mining many years ago that alerted me to how energy-intensive seemingly straightforward computational processes could get, followed by a reminder when I worked at The Hindu – where the two computers used to render videos were located in a small room fit with its own AC, fixed at 18º C, and when they were rendering videos without any special effects, the CPUs’ fans would scream.

Today, digital artists create most CGI and special effects using graphics processing units (GPUs) – a notable exception was the black hole in Nolan’s 2014 film Interstellar, created using CPUs – and Nvidia and AMD are two of the more ‘leading’ brands from what I know (I don’t know much). One set of tests whose results a site called ‘Tom’s Hardware’ reported in May this year found an Nvidia GeForce RTX 2080 Ti FE GPU is among the bottom 10% of performers in terms of wattage for a given task – in this case 268.7 W to render fur – among the 42 options the author tested. An AMD Radeon RX 5700 XT GPU consumed nearly 80% as much for the same task, falling in the seventh decile. A bunch of users on this forum say a film like Transformers will need Nvidia Quadro and AMD Firepro GPUs; the former consumed 143 W in one fur-rendering test. (Comparability may be affected by differences in the hardware setup.) Then there’s the cooling cost.

Again, I don’t know if Nolan considered any of these issues – but I doubt that he did – when he ‘ran the numbers’ to determine what would be better: blowing up a real plane or a make-believe one. Intuition does suggest the former would be a lot more exergonic (although here, again, we’re forced to reckon with the environmental and social cost of obtaining specific metals, typically from middle-income nations, required to manufacture advanced electronics).

Cinema is a very important part of 21st century popular culture and popular culture is a very important part of how we as social, political people (as opposed to biological humans) locate ourselves in the world we’ve constructed – including being good citizens, conscientious protestors, sensitive neighbours. So constraining cinema’s remit or even imposing limits on filmmakers for the climate’s sake are ridiculous courses of action. This said, when there are options (and so many films have taught us there are always options), we have a responsibility to pick the more beneficial one while assuming the fewest externalities.

The last bit is important: the planet is a single unit and all of its objects occupants are wildly interconnected. So ‘negative externalities’ as such are more often than not trade practices crafted to simplify administrative and/or bureaucratic demands. In the broader ‘One Health’ sense, they vanish.