Higgs boson closer than ever

The article, as written by me, appeared in The Hindu on March 7, 2013.

Ever since CERN announced that it had spotted a Higgs boson-like particle on July 4, 2012, their flagship Large Hadron Collider (LHC), apart from similar colliders around the world, has continued running experiments to gather more data on the elusive particle.

The latest analysis of the results from these runs was presented at a conference now underway in Italy.

While it is still too soon to tell if the one spotted in July 2012 was the Higgs boson as predicted in 1964, the data is convergent toward the conclusion that the long-sought particle does exist and with the expected properties. More results will be presented over the upcoming weeks.

In time, particle physicists hope that it will once and for all close an important chapter in physics called the Standard Model (SM).

The announcements were made by more than 15 scientists from CERN on March 6 via a live webcast from the Rencontres de Moriond, an annual particle physics forum that has been held in La Thuile, Italy, since 1966.

“Since the properties of the new particle appear to be very close to the ones predicted for the SM Higgs, I have personally no further doubts,” Dr. Guido Tonelli, former spokesperson of the CMS detector at CERN, told The Hindu.

Interesting results from searches for other particles, as well as the speculated nature of fundamental physics beyond the SM, were also presented at the forum, which runs from March 2-16.

Physicists exploit the properties of the Higgs to study its behaviour in a variety of environments and see if it matches with the theoretical predictions. A key goal of the latest results has been to predict the strength with which the Higgs couples to other elementary particles, in the process giving them mass.

This is done by analysing the data to infer the rates at which the Higgs-like particle decays into known lighter particles: W and Z bosons, photons, bottom quarks, tau leptons, electrons, and muons. These particles’ signatures are then picked up by detectors to infer that a Higgs-like boson decayed into them.

The SM predicts these rates with good precision.

Thus, any deviation from the expected values could be the first evidence of new, unknown particles. By extension, it would also be the first sighting of ‘new physics’.

Bad news for new physics, good news for old

After analysis, the results were found to be consistent with a Higgs boson of mass near 125-126 GeV, measured at both 7- and 8-TeV collision energies through 2011 and 2012.

The CMS detector observed that there was fairly strong agreement between how often the particle decayed into W bosons and how often it ought to happen according to theory. The ratio between the two was pinned at 0.76 +/- 0.21.

Dr. Tonelli said, “For the moment, we have been able to see that the signal is getting stronger and even the difficult-to-measure decays into bottom quarks and tau-leptons are beginning to appear at about the expected frequency.”

The ATLAS detector, parallely, was able to observe with 99.73 per cent confidence-level that the analysed particle had zero-spin, which is another property that brings it closer to the predicted SM Higgs boson.

At the same time, the detector also observed that the particle’s decay to two photons was 2.3 standard-deviations higher than the SM prediction.

Dr. Pauline Gagnon, a scientist with the ATLAS collaboration, told this Correspondent via email, “We need to asses all its properties in great detail and extreme rigour,” adding that for some aspects they would need more data.

Even so, the developments rule out signs of any new physics around the corner until 2015, when the LHC will reopen after a two-year shutdown and multiple upgrades to smash protons at doubled energy.

As for the search for Supersymmetry, a favoured theoretical concept among physicists to accommodate phenomena that haven’t yet found definition in the Standard Model: Dr. Pierluigi Campana, LHCb detector spokesperson, told The Hindu that there have been only “negative searches so far”.

A different kind of experiment at CERN

This article, as written by me, appeared in The Hindu on January 24, 2012.

At the Large Hadron Collider (LHC) at CERN, near Geneva, Switzerland, experiments are conducted by many scientists who don’t quite know what they will see, but know how to conduct the experiments that will yield answers to their questions. They accelerate beams of particles called protons to smash into each other, and study the fallout.

There are some other scientists at CERN who know approximately what they will see in experiments, but don’t know how to do the experiment itself. These scientists work with beams of antiparticles. According to the Standard Model, the dominant theoretical framework in particle physics, every particle has a corresponding particle with the same mass and opposite charge, called an anti-particle.

In fact, at the little-known AEgIS experiment, physicists will attempt to produce an entire beam composed of not just anti-particles but anti-atoms by mid-2014.

AEgIS is one of six antimatter experiments at CERN that create antiparticles and anti-atoms in the lab and then study their properties using special techniques. The hope, as Dr. Jeffrey Hangst, the spokesperson for the ALPHA experiment, stated in an email, is “to find out the truth: Do matter and antimatter obey the same laws of physics?”

Spectroscopic and gravitational techniques will be used to make these measurements. They will improve upon, “precision measurements of antiprotons and anti-electrons” that “have been carried out in the past without seeing any difference between the particles and their antiparticles at very high sensitivity,” as Dr. Michael Doser, AEgIS spokesperson, told this Correspondent via email.

The ALPHA and ATRAP experiments will achieve this by trapping anti-atoms and studying them, while the ASACUSA and AEgIS will form an atomic beam of anti-atoms. All of them, anyway, will continue testing and upgrading through 2013.

Working principle

Precisely, AEgIS will attempt to measure the interaction between gravity and antimatter by shooting an anti-hydrogen beam horizontally through a vacuum tube and then measuring how it much sags due to the gravitational pull of the Earth to a precision of 1 per cent.

The experiment is not so simple because preparing anti-hydrogen atoms is difficult. As Dr. Doser explained, “The experiments concentrate on anti-hydrogen because that should be the most sensitive system, as it is not much affected by magnetic or electric fields, contrary to charged anti-particles.”

First, antiprotons are derived from the Antiproton Decelerator (AD), a particle storage ring which “manufactures” the antiparticles at a low energy. At another location, a nanoporous plate is bombarded with anti-electrons, resulting in a highly unstable mixture of both electrons and anti-electrons called positronium (Ps).

The Ps is then excited to a specific energy state by exposure to a 205-nanometre laser and then an even higher energy state called a Rydberg level using a 1,670-nanometre laser. Last, the excited Ps traverses a special chamber called a recombination trap, when it mixes with antiprotons that are controlled by precisely tuned magnetic fields. With some probability, an antiproton will “trap” an anti-electron to form an anti-hydrogen atom.

Applications

Before a beam of such anti-hydrogen atoms is generated, however, there are problems to be solved. They involve large electric and magnetic fields to control the speed of and collimate the beams, respectively, and powerful cryogenic systems and ultra-cold vacuums. Thus, Dr. Doser and his colleagues will spend many months making careful changes to the apparatus to ensure these requirements work in tandem by 2014.

While antiparticles were first discovered in 1959, “until recently, it was impossible to measure anything about anti-hydrogen,” Dr. Hangst wrote. Thus, the ALPHA and AEgIS experiments at CERN provide a seminal setting for exploring the world of antimatter.

Anti-particles have been used effectively in many diagnostic devices such as PET scanners. Consequently, improvements in our understanding of them feed immediately into medicine. To name an application: Antiprotons hold out the potential of treating tumors more effectively.

In fact, the feasibility of this application is being investigated by the ACE experiment at CERN.

In the words of Dr. Doser: “Without the motivation of attempting this experiment, the experts in the corresponding fields would most likely never have collaborated and might well never have been pushed to solve the related interdisciplinary problems.”

LHC to re-awaken in 2015 with doubled energy, luminosity

This article, as written by me, appeared in The Hindu on January 10, 2012.

After a successful three-year run that saw the discovery of a Higgs-boson-like particle in early 2012, the Large Hadron Collider (LHC) at CERN, near Geneva, Switzerland, will shut down for 18 months for maintenance and upgrades.

This is the first of three long shutdowns, scheduled for 2013, 2017, and 2022. Physicists and engineers will use these breaks to ramp up one of the most sophisticated experiments in history even further.

According to Mirko Pojer, Engineer In-charge, LHC-operations, most of these changes were planned in 2011. They will largely concern fixing known glitches on the ATLAS and CMS particle-detectors. The collider will receive upgrades to increase its collision energy and frequency.

Presently, the LHC smashes two beams, each composed of precisely spaced bunches of protons, at 3.5-4 tera-electron-volts (TeV) per beam.

By 2015, the beam energy will be pushed up to 6.5-7 TeV per beam. Moreover, the bunches which were smashed at intervals of 50 nanoseconds will do so at 25 nanoseconds.

After upgrades, “in terms of performance, the LHC will deliver twice the luminosity,” Dr. Pojer noted in an email to this Correspondent, with reference to the integrated luminosity. Precisely, it is the number of collisions that the LHC can deliver per unit area which the detectors can track.

The instantaneous luminosity, which is the luminosity per second, will be increased to 1×1034 per centimetre-squared per second, ten-times greater than before, and well on its way to peaking at 7.73×1034 per centimetre-squared per second by 2022.

As Steve Myers, CERN’s Director for Accelerators and Technology, announced in December 2012, “More intense beams mean more collisions and a better chance of observing rare phenomena.” One such phenomenon is the appearance of a Higgs-boson-like particle.

The CMS experiment, one of the detectors on the LHC-ring, will receive some new pixel sensors, a technology responsible for tracking the paths of colliding particles. To make use of the impending new luminosity-regime, an extra layer of these advanced sensors will be inserted around a smaller beam pipe.

If results from it are successful, CMS will receive the full unit in late-2016.

In the ATLAS experiment, unlike with CMS which was built with greater luminosities in mind, pixel sensors are foreseen to wear out within one year after upgrades. As an intermediate solution, a new layer of sensors called the B-layer will be inserted within the detector for until 2018.

Because of the risk of radiation damage due to more numerous collisions, specific neutron shields will be fit, according to Phil Allport, ATLAS Upgrade Coordinator.

Both ATLAS and CMS will also receive evaporative cooling systems and new superconducting cables to accommodate the higher performance that will be expected of them in 2015. The other experiments, LHCb and ALICE, will also undergo inspections and upgrades to cope with higher luminosity.

An improved failsafe system will be installed and the existing one upgraded to prevent accidents such as the one in 2008.

Then, an electrical failure damaged 29 magnets and leaked six tonnes of liquid helium into the tunnel, precipitating an eight-month shutdown.

Generally, as Martin Gastal, CMS Experimental Area Manager, explained via email, “All sub-systems will take the opportunity of this shutdown to replace failing parts and increase performance when possible.”

All these changes have been optimised to fulfil the LHC’s future agenda. This includes studying the properties of the newly discovered particle, and looking for signs of new theories of physics like supersymmetry and higher dimensions.

(Special thanks to Achintya Rao, CMS Experiment.)

Putting particle physics research to work

In the whole gamut of comments regarding the Higgs boson, there is a depressingly large number decrying the efforts of the ATLAS and CMS collaborations. Why? Because a lot of people think the Large Hadron Collider (LHC) is a yawning waste of time and money, an investment that serves mankind no practical purpose.

Well, here and here are some cases in point that demonstrate the practical good that the LHC has made possible in the material sciences. Another big area of application is in medical diagnostics: making the point is one article about hunting for the origin of Alzheimer’s, and another about the very similar technology used in particle accelerators and medical imaging devices, meteorology, VLSI, large-scale networking, cryogenics, and X-ray spectroscopy.

Moving on to more germane applications: arXiv has reams of papers that discuss the deployment of

… amongst others.

The LHC, above all else, is the brainchild of the European Centre for Nuclear Research, popularly known as CERN. These guys invented the notion of the internet, developed the first touch-screen devices, and pioneered the earliest high-energy medical imaging techniques.

With experiments like those being conducted at the LHC, it’s easy to forget every other development in such laboratories apart from the discovery of much-celebrated particles. All the applications I’ve linked to in this post were conceived by scientists working with the LHC, if only to argue that everyone, the man whose tax money pays for these giant labs to the man who uses the money to work in the labs, is mindful of practical concerns.

Gunning for the goddamned: ATLAS results explained

Here are some of the photos from the CERN webcast yesterday (July 4, Wednesday), with an adjoining explanation of the data presented in each one and what it signifies.

This first image shows the data accumulated post-analysis of the diphoton decay mode of the Higgs boson. In simpler terms, physicists first put together all the data they had that resulted from previously known processes. This constituted what’s called the background. Then, they looked for signs of any particle that seemed to decay into two energetic photons, or gamma rays, in a specific energy window; in this case, 100-160 GeV.

Finally, knowing how the number of events would vary in a scenario without the Higgs boson, a curve was plotted that fit the data perfectly: the number of events at each energy level v. the energy level at which it was tracked. This way, a bump in the curve during measurement would mean there was a particle previously unaccounted for that was causing an excess of diphoton decay events at a particular energy.

This is the plot of the mass of the particle being looked for (x-axis) versus the confidence level with which it has (or has not, depending n how you look at it) been excluded as an event to focus on. The dotted horizontal line, corresponding to 1μ, marks off a 95% exclusion limit: any events registered above the line can be claimed as having been observed with “more than 95% confidence” (colloquial usage).

Toward the top-right corner of the image are some numbers. 7 TeV and 8 TeV are the values of the total energy going into each collision before and after March, 2012, respectively. The beam energy was driven up to increase the incidence of decay events corresponding to Higgs-boson-like particles, which, given the extremely high energy at which they exist, are viciously short-lived. In experiments that were run between March and July, physicists at CERN reported an increase of almost 25-30% of such events.

The two other numbers indicate the particle accelerator’s integrated luminosity. In particle physics, luminosity is measured as the number of particles that can pass detected through a unit of area per second. The integrated luminosity is the same value but measured over a period of time. In the case of the LHC, after the collision energy was vamped up, the luminosity, too, had to be increased: from about 4.7 fb-1 to 5.8 fb-1. You’ll want to Wiki the unit of area called barn. Some lighthearted physics talk there.

In this plot, the y-axis on the left shows the chances of error, and the corresponding statistical significance on the right. When the chances of an error stand at 1, the results are not statistically significant at all because every observation is an error! But wait a minute, does that make sense? How can all results be errors? Well, when looking for one particular type of event, any event that is not this event is an error.

Thus, as we move toward the ~125 GeV mark, the number of statistically significant results shoot up drastically. Looking closer, we see two results registered just beyond the 5-sigma mark, where the chances of error are 1 in 3.5 million. This means that if the physicists created just those conditions that resulted in this >5σ (five-sigma) observation 3.5 million times, only once will a random fluctuation play impostor.

Also, notice how the differences between each level of statistical significance increases with increasing significance? For chances of errors: 5σ – 4σ > 4σ – 3σ > … > 1σ – 0σ. This means that the closer physicists get to a discovery, the exponentially more precise they must be!

OK, this is a graph showing the mass-distribution for the four-lepton decay mode, referred to as a channel by those working on the ATLAS and CMS collaborations (because there are separate channels of data-taking for each decay-mode). The plotting parameters are the same as in the first plot in this post except for the scale of the x-axis, which goes all the way from 0 to 250 GeV. Now, between 120 GeV and 130 GeV, there is an excess of events (light blue). Physicists know it is an excess and not at par with expectations because theoretical calculations made after discounting a Higgs-boson-like decay event show that, in that 10 GeV, only around 5.3 events are to be expected, as opposed to the 13 that turned up.

After the Higgs-boson-like particle, what’s next?

This article, as written by me, appeared in print in The Hindu on July 5, 2012.

The ATLAS (A Toroidal LHC Apparatus) collaboration at CERN has announced the sighting of a Higgs boson-like particle in the energy window of 125.3 ± 0.6 GeV. The observation has been made with a statistical significance of 5 sigma. This means the chances of error in their measurements are 1 in 3.5 million, sufficient to claim a discovery and publish papers detailing the efforts in the hunt.

Rolf-Dieter Heuer, Director General of CERN since 2009, said at the special conference called by CERN in Geneva, “It was a global effort, it is a global effort. It is a global success.” He expressed great optimism and concluded the conference saying this was “only the beginning.”

With this result, collaborations at the Large Hadron Collider (LHC), the atom-smashing machine, have vastly improved on their previous announcement on December 13, 2011, where the chance of an error was 1-in-50 for similar sightings.

A screenshot from the Dec 13, 2011, presentation by Fabiola Gianotti, leader of the ATLAS collaboration, that shows a global statistical significance of 2.3 sigma, which translates to a 1-in-50 chance of the result being erroneous.

Another collaboration, called CMS (Compact Muon Solenoid), announced the mass of the Higgs-like particle with a 4.9 sigma result. While insufficient to claim a discovery, it does indicate only a one-in-two-million chance of error.

Joe Incandela, CMS spokesman, added, “We’re reaching into the fabric of the universe at a level we’ve never done before.”

The LHC will continue to run its experiments so that results revealed on Wednesday can be revalidated before it shuts down at the end of the year for maintenance. Even so, by 2013, scientists, such as Dr. Rahul Sinha, a participant of the Belle Collaboration in Japan, are confident that a conclusive result will be out.

“The LHC has the highest beam energy in the world now. The experiment was designed to yield quick results. With its high luminosity, it quickly narrowed down the energy-ranges. I’m sure that by the end of the year, we will have a definite word on the Higgs boson’s properties,” he said.

However, even though the Standard Model, the framework of all fundamental particles and the dominating explanatory model in physics today, predicted the particle’s existence, slight deviations have been observed in terms of the particle’s predicted mass. Even more: zeroing in on the mass of the Higgs-like particle doesn’t mean the model is complete when, in fact, it is far from.

While an answer to the question of mass formation took 50 years to be reached, physicists are yet to understand many phenomena. For instance, why aren’t the four fundamental forces of nature equally strong?

The weak, nuclear, electromagnetic, and gravitational forces were born in the first few moments succeeding the Big Bang 13.75 billion years ago. Of these, the weak force is, for some reason, almost 1 billion, trillion, trillion times stronger than the gravitational force! Called the hierarchy problem, it evades a Standard Model explanation.

In response, many theories were proposed. One, called supersymmetry (SUSY), proposed that all fermions, which are particles with half-integer spin, were paired with a corresponding boson, or particles with integer spin. Particle spin is the term quantum mechanics attributes to the particle’s rotation around an axis.

Technicolor was the second framework. It rejects the Higgs mechanism, a process through which the Higgs boson couples stronger with some particles and weaker with others, making them heavier and lighter, respectively.

Instead, it proposes a new form of interaction with initially-massless fermions. The short-lived particles required to certify this framework are accessible at the LHC. Now, with a Higgs-like particle having been spotted with a significant confidence level, the future of Technicolor seems uncertain.

However, “significant constraints” have been imposed on the validity of these and such theories, labeled New Physics, according to Prof. M.V.N. Murthy of the Institute of Mathematical Sciences (IMS), whose current research focuses on high-energy physics.

Some other important questions include why there is more matter than antimatter in this universe, why fundamental particles manifest in three generations and not more or fewer, and the masses of the weakly-interacting neutrinos. State-of-the-art technology worldwide has helped physicists design experiments to study each of these problems better.

For example, the India-based Neutrino Observatory (INO), under construction in Theni, will house the world’s largest static particle detector to study atmospheric neutrinos. Equipped with its giant iron-calorimeter (ICAL) detector, physicists aim to discover which neutrinos are heavier and which lighter.

The LHC currently operates at the Energy Frontier, with high-energy being the defining constraint on experiments. Two other frontiers, Intensity and Cosmic, are also seeing progress. Project X, a proposed proton accelerator at Fermilab in Chicago, Illinois, will push the boundaries of the Intensity Frontier by trying to look for ultra-rare process. On the Cosmic Frontier, dark matter holds the greatest focus.

So, is it going to be good news tomorrow?

As the much-anticipated lead-up to the CERN announcement on Wednesday unfolds, the scientific community is rife with many speculations and few rumours. In spite of this deluge, it may be that we could expect a confirmation of the God particle’s existence in the seminar called by physicists working on the Large Hadron Collider (LHC).

The most prominent indication of good news is that five of the six physicists who theorized the Higgs mechanism in a seminal paper in 1964 have been invited to the meeting. The sixth physicist, Robert Brout, passed away in May 2011. Peter Higgs, the man for whom the mass-giving particle is named, has also agreed to attend.

The other indication is much more subtle but just as effective. Dr. Rahul Sinha, a professor of high-energy physics and a participant in the Japanese Belle collaboration, said, “Hints of the Higgs boson have already been spotted in the energy range in which LHC is looking. If it has to be ruled out, four-times as much statistical data should have been gathered to back it up, but this has not been done.”

The energy window which the LHC has been combing through was based on previous searches for the particle at the detector during 2010 and at the Fermilab’s Tevatron before that. While the CERN-based machine is looking for signs of two-photon decay of the notoriously unstable boson, the American legend looked for signs of the boson’s decay into two bottom quarks.

Last year, on December 13, CERN announced in a press conference that the particle had been glimpsed in the vicinity of 127 GeV (GeV, or giga-electron-volt, is used as a measure of particle energy and, by extension of the mass-energy equivalence, its mass).

However, scientists working on the ATLAS detector, which is heading the search, could establish only a statistical significance of 2.3 sigma then, or a 1-in-50 chance of error. To claim a discovery, a 5-sigma result is required, where the chances of errors are one in 3.5 million.

Scientists, including Dr. Sinha and his colleagues, are hoping for a 4-sigma result announcement on Wednesday. If they get it, the foundation stone will have been set for physicists to explore further into the nature of fundamental particles.

Dr. M.V.N. Murthy, who is currently conducting research in high-energy physics at the Institute of Mathematical Sciences (IMS), said, “Knowing the mass of the Higgs boson is the final step in cementing the Standard Model.” The model is a framework of all the fundamental particles and dictates their behaviour. “Once we know the mass of the particle, we can move on and explore the nature of New Physics. It is just around the corner,” he added.