A revolutionary exoplanet

In 1992, Aleksander Wolszczan and Dale Frail became the first astronomers to publicly announce that they had discovered the first planets outside the Solar System, orbiting the dense core of a dead star about 2,300 lightyears away. This event is considered to be the first definitive detection of exoplanets, a portmanteau of extrasolar planets. However, Michel Mayor and Didier Queloz were recognised today with one half of the 2019 Nobel Prize for physics for discovering an exoplanet three years after Wolszczan and Frail did. This might be confusing – but it becomes clear once you stop to consider the planet itself.

51 Pegasi b orbits a star named 51 Pegasi about 50 lightyears away from Earth. In 1995, Queloz and Mayor were studying the light and other radiation coming from the star when they noticed that it was wobbling ever so slightly. By measuring the star’s radial velocity and using an analytical technique called Doppler spectroscopy, Queloz and Mayor realised there was a planet orbiting it. Further observations indicated that the planet was a ‘hot Jupiter’, a giant planet with a surface temperature of ~1,000º C orbiting really close to the star.

In 2017, Dutch and American astronomers studied the planet in even greater detail. They found its atmosphere was 0.01% water (a significant amount), it weighed about half as much as Jupiter and orbited 51 Pegasi once every four days.

This was surprising. 51 Pegasi is a Sun-like star, meaning its brightness and colour are similar to the Sun’s. However, this ‘foreign’ system looked nothing like our own Solar System. It contained a giant planet much like Jupiter but which was a lot closer to its star than Mercury is to the Sun.

Astronomers were startled because their ideas of what a planetary system should look like was based on what the Solar System looked like: the Sun at the centre, four rocky planets in the inner system, followed by gas- and ice-giants and then a large, ringed debris field in the form of an outer asteroid belt. Many researchers even thought hot Jupiters couldn’t exist. But the 51 Pegasi system changed all that.

It was so different that Queloz and Mayor were first met with some skepticism, including questions about whether they’d misread the data and whether the wobble they’d seen was some quirk of the star itself. However, as time passed, astronomers only became more convinced that they indeed had an oddball system on their hands. David Gray had penned a paper in 1997 arguing that 51 Pegasi’s wobble could be understood without requiring a planet to orbit it. He published another paper in 1998 correcting himself and lending credence to Queloz’s and Mayor’s claim. The duo received bigger support by inspiring other astronomers to take another look at their data and check if they’d missed any telltale signs of a planet. In time, they would discover more hot Jupiters, also called pegasean planets, orbiting conventional stars.

Through the next decade, it would become increasingly clear that the oddball system was in fact the Solar System. To date, astronomers have confirmed the existence of over 4,100 exoplanets. None of them belong to planetary systems that look anything like our own. More specifically, the Solar System appears to be unique because it doesn’t have any planets really close to the Sun; doesn’t have any planets heavier than Earth but lighter than Neptune – an unusually large mass gap; and most of whose planets revolve in nearly circular orbits.

Obviously the discovery forced astronomers to rethink how the Solar System could have formed versus how typical exoplanetary systems form. For example, scientists were able to develop two competing models for how hot Jupiters could have come to be: either by forming farther away from the host star and then migrating inwards or by forming much closer to the star and just staying there. But as astronomers undertook more observations of stars in the universe, they realised the region closest to the star often doesn’t have enough material to clump together to form such large planets.

Simulations also suggest than when a Jupiter-sized planet migrates from 5 AU to 0.1 AU, its passage could make way for Earth-mass planets to later form in the star’s habitable zone. The implication is that planetary systems that have hot Jupiters could also harbour potentially life-bearing worlds.

But there might not be many such systems. It’s notable that fewer than 10% of exoplanets are known to be hot Jupiters (only seven of them have an orbital period of less than one Earth-day). They’re just more prominent in the news as well as in the scientific literature because astronomers think they’re more interesting objects of study, further attesting to the significance of 51 Pegasi b. But even in their low numbers, hot Jupiters have been raising questions.

For example, according to data obtained by the NASA Kepler space telescope, which looked for the fleeting shadows that planets passing in front of their stars cast on the starlight, only 0.3-0.5% of the stars it observed had hot Jupiters. But observations using the radial velocity method, which Queloz and Mayor had also used in 1995, indicated a prevalence of 1.2%. Jason Wright, an astronomer at the Pennsylvania State University, wrote in 2012 that this discrepancy signalled a potentially deeper mystery: “It seems that the radial velocity surveys, which probe nearby stars, are finding a ‘hot-Jupiter rich’ environment, while Kepler, probing much more distant stars, sees lots of planets but hardly any hot Jupiters. What is different about those more distant stars? … Just another exoplanet mystery to be solved…”.

All of this is the legacy of the discovery of 51 Pegasi b. And given the specific context in which it was discovered and how the knowledge of its existence transformed how we think about our planetary neighbourhoods and neighbourhoods in other parts of the universe, it might be fair to say the Nobel Prize for Queloz and Mayor is in recognition of their willingness to stand by their data, seeing a planet where others didn’t.

The Wire
October 8, 2019

Astronomers find colossal ring system putting Saturn’s to shame

An astronomy professor at the University of Leiden, Ignas Snellen,called brown dwarfs ‘failed stars‘ because they were too heavy to be typical planets (13-75 times as heavy as Jupiter) and too light to sustain the fusion of hydrogen into helium. As a result, they exist in a limbo in astronomers’ textbooks, with the precise mechanism of their formation remaining a mystery.

However, failed or no, brown dwarfs are still massive objects and make for interesting features in the universe. One stellar example is the pithily named J1407b. It was discovered in 2012 by astronomers at the Leiden Observatory and University of Rochester, New York, orbiting a star – J1407 – about 420 light-years from Earth. J1407b is young – about 16 million years old. But it’s most striking feature is an extended ring system.

In 2012, the astronomers studying it surmised that the dwarf likely has 37 rings, altogether 120 million km in diameter (as wide as Mercury’s orbit around the Sun). Compare this to Saturn’s ring system, which is at most 300,000 km wide*. There are conspicuous gaps between these rings as well – notably at a distance of about 60 million km from the inside – indicating that there might be moons inhabiting them, formed by sweeping up the missing material.

Artist’s conception of the extrasolar ring system circling the young giant planet or brown dwarf J1407b. The rings are shown eclipsing the young sun-like star J1407, as they would have appeared in early 2007.
Artist’s conception of the extrasolar ring system circling the young giant planet or brown dwarf J1407b. The rings are shown eclipsing the young sun-like star J1407, as they would have appeared in early 2007. Credit: Ron Miller

The research team estimates that the amount of material orbiting as rings might all together weigh as much as hundred-times Earth’s moon, which is not anomalous considering J1407b is still young and likely not fully formed yet.

The way it was discovered is interesting. An exoplanet shows itself when seen through a telescope when it passes in front of its host star and casts a weak but persistent shadow on the telescope lens. When observing the J1407 system using the Super Wide Angle Search for Planets project in 2007, the astronomers found something was taking 56 days to move all the way across the face of its star. It was either an extremely large object or it had rings.

Model ring fit to J1407 data.
Model ring fit to J1407 data. The red data-points at the bottom show the dips in starlight intensity. The curve fitting them is plotted in green. Credit: Kenworthy, MA & Mamajek, EE. arXiv

A second observation supported the rings hypothesis: the amount of starlight blocked wasn’t constant, but rose and dipped as if the amount of material passing in front of it was uneven. In fact, at one point, fully 95% of the starlight was blocked.

“The star is much too far away to observe the rings directly, but we could make a detailed model based on the rapid brightness variations in the star light passing through the ring system,” noted Leiden’s Matthew Kenworthy, who analyzed the data. “If we could replace Saturn’s rings with the rings around J1407b, they would be easily visible at night and be many times larger than the full moon.”

Estimating the mass of the ring-system would’ve required Doppler spectroscopy data as well, which wasn’t available until late 2014.

Curiously, the planet J1407b hasn’t been spotted directly yet. The astronomers are assuming it’s there simply because something like it has to hold this ring system together. In fact, its characterization as a brown dwarf is simply what it has to be at the least. The Doppler data indicates it has to weight some 10-40 times as much as Jupiter, i.e. much bigger than a gas giant, much smaller than a main-sequence star.

A paper discussing the team’s results was accepted for publication in the Astrophysical Journal on December 28, 2014. Even as studies of this giant will continue, the astronomers have called on their amateur counterparts from around the world to help them. “J1407’s eclipses will allow us to study the physical and chemical properties of satellite-spawning circumplanetary disks,” Kenworthy said of incentives.

*Not counting the feeble Phoebe ring.