The government’s enblightenment

The GMO debate is a fascinating object, even though participating in it often amounts to nothing but pain, frustration and lost time – especially if you’re pro-GMO foods. It’s fascinating because it’s one of a kind: one party has science on its side but little else, including good science outreach, and the other has sociology but also lots of overreaching rhetoric. There is also an unseen foe, the agrochemical company Monsanto, whose decades of indulgence in unethical practices and corporate recalcitrance to promote the sales of its fertilisers and genetically modified seeds have blighted the soil – both literally and figuratively – rendering hundreds of thousands of people around the world forever suspicious of genetic engineering vis-à-vis agriculture. One prominent outcome of this ‘enblightenment’ is that scientifically robust data no longer suffices to qualify GM products for regulatory approval, and any such approval, once granted, becomes automatically subsumed by doubts about corruption and subversion. Another outcome is the pall of cynicism that hangs over any public deliberations of GM products, especially regarding business practices – cynicism that effectively holds a gap open for unscientific, even pseudoscientific, arguments to slip into the debate and for untenable rhetorical methods, especially whataboutery, to find more purchase than might be warranted. Taken together, I think these are some reasons why the GMO debate has lasted for so long and why settling it to the effect of everyone being more accepting of GM seeds is going to be very hard.

It would seem some of these features are also visible, or are becoming apparent, on a different front. Baba Ramdev’s (I suspect) pseudo-Ayurvedic company Patanjali Ayurved has come under fire for falsely claiming an antiviral drug it has minted, called Coronil, was approved by the WHO for use against COVID-19. The WHO hasn’t granted any such approval – and the study backing up Coronil’s efficacy doesn’t seem to hold up to deeper scrutiny either. However, Patanjali Ayurved has stood its ground, most recently lashing out against the Indian Medical Association (IMA) for calling Coronil’s public launch on February 19, with Union health minister Harsh Vardhan in attendance as an honoured guest, despite its dubious credentials was “a slap and insult to the people of the country”. A spokesperson for Patanjali, S.K. Tijarawala, tweeted the company’s rebuttal on February 25, asking the IMA to focus on availing the people of India more affordable healthcare first and to abolish the practice of “commissions in the medical profession”. This is plain whataboutery – responding to one argument with another while also changing the topic. However, this counterargument is also likely to stick because access to affordable and good quality healthcare and over-charging in private clinics and hospitals are both big and rampant problems in India, thanks to the oversight of successive governments and the privatising tendencies of the current one. And even though Patanjali is resorting to whataboutery to advance this accusation, the issues’ shared relevance is likely to be able to hold the door open for someone – a minister, a political leader, a prominent doctor, anyone – to legitimise the contention, in much the same way Monsanto mass-poisoned the public impression of GMOs, thus allowing otherwise untenable anti-GMO arguments to survive for longer in conversation. Humming quietly in the background is of course the government’s profitable hypocrisy: of doing nothing to ensure the problems Patanjali is using to hide from the IMA’s complaint go away, dispatching two of its senior ministers to endorse Patanjali’s products despite the near-complete absence of reason in its ‘approval’ by the government, and allowing Patanjali to justify Coronil’s existence by offering it – in vague and therefore irrefutable terms – as a potential solution for India’s ‘access to healthcare’ problems.

GM crops, etc.

There’s been a flurry of stories in my inbox since India’s GEAC cleared a variety of GM mustard, developed by Monsanto, for commercial utilisation in India. It’s an important step, bringing a potentially valuable – as well as potentially damaging – crop closer to being introduced in the market. However, thanks to disasters associated with previous GM foodcrop introductions like Bt cotton and Bt brinjal, the introduction of GM mustard isn’t going to go down smoothly. Then again, if a writer doesn’t want GM mustard to be introduced, then the burden of proof is on her to convince me, or any reader for that matter, either that GM mustard is bound to fail as a crop or that it is being introduced in a manner that’s become typical of the Indian government: through half-measures and seldom in a way that suggests the state is ready to face all possible consequences, especially the adverse ones.

On the other hand, how does it make sense to grate against Bt cotton and Bt brinjal in order to discourage the introduction of GM mustard? Doing so suggests an immensely pessimistic determinism, an assumption that we will never produce the perfect genetically modified crop. Notwithstanding Monsanto’s transgressions in the past, I do think that GM is the future – it has to be to keep feeding a planet of more than 7,000,000,000. And apart from optimising food storage and transportation, the demand for food is bound to grow with more people coming out of poverty. To insist at this point to switch to organic farming, which involves methods that may be locally sustainable but doesn’t have the mass-production capacity of conventional agriculture that this world has become addicted to, en masse and abandon GM options is nothing but foolish.

Yes, we make mistakes, and yes, we’re faced with some very difficult choices, but let’s start making decisions that go beyond the local ecology and local impact – not by abdicating local economies and people but by doing all of this in a way that no one loses out. Again, not going to be easy. I’m not sure anything in this sphere can be. Finally, yes, I’m aware that I’m speaking from a position of privilege; I stand by my comments. Oh, one more thing: The Wire‘s science section has also imposed a moratorium on non-reported GM pieces. I’m really keen on taking the conversation forward, not drowning a platform with The Wire‘s import in volleys exchanged between pro- and anti-GM camps.

Featured image credit: PublicDomainPictures/pixabay.

Corrected: ‘Life’s Greatest Secret’ by Matthew Cobb

An earlier version of this post was published by mistake. This is the corrected version. Featured image credit: amazon.in

When you write a book like Siddhartha Mukherjee’s The Gene: An Intimate History, the chance of a half-success is high. You will likely only partly please your readers instead of succeeding or even failing completely. Why? Because the scope of your work will be your biggest enemy, and in besting this enemy, you will at various points be forced to find a fine balance between breadth and depth. I think the author was not just aware of this problem but embraced it: The Gene is a success for having been written. Over 490 pages, Mukherjee weaves together a social, political and technical history of the genome, and unravels how developments from each strain have fed into the others. The effect is for it to have become a popular choice among biology beginners but a persistent point of contention among geneticists and other researchers. However, that it has been impactful has been incontestable.

At the same time, the flipside of such a book on anything is its shadow, where anything less ambitious or even less charming can find itself languishing. This I think is what has become of Life’s Greatest Secret by Matthew Cobb. Cobb, a zoologist at the University of Manchester, traces the efforts of scientists through the twentieth century to uncover the secrets of DNA. To be sure, this is a journey many authors have retraced, but what Cobb does differently are broadly two things. First: he sticks to the participants and the progress of science, and doesn’t deviate from this narrative, which can be hard to keep interesting. Second: he combines his profession as a scientist and his education as an historian to stay aware, and keep the reader aware, of the anthropology of science.

On both counts – of making the science interesting while tasked with exploring an history that can become confusing – Cobb is assisted by the same force that acted in The Gene‘s favour. Mukherjee banked on the intrigues inherent in a field of study that has evolved to become extremely influential as well as controversial to get the reader in on the book’s premise; he didn’t have to spend too much effort convincing a reader why books like his are important. Similarly, Life’s Greatest Secret focuses on those efforts to explore the DNA that played second fiddle to the medicinal applications of genetics in The Gene but possess intrigues of their own. And because Cobb is a well-qualified scientist, he is familiar with the various disguises of hype and easily cuts through them – as well as teases out and highlights less well-known .

For example, my favourite story is of the Matthaei-Nirenberg experiment in 1961 (chapter 10, Enter The Outsiders). Marshall Nirenberg was the prime mover in this story, which was pegged on the race to map the nucleotide triplets to the amino acids they coded for. The experiment was significant because it ignored one of Francis Crick’s theories, popular at the time, that a particular kind of triplet couldn’t code for an amino acid. The experiment roundly drubbed this theory, and in the process delivered a much-needed dent to the circle of self-assured biologists who took Crick’s words as gospel. Another way the experiment triumphed was by showing that ‘outsiders’ (i.e. non-geneticists like the biochemists that Nirenberg and Heinrich) could also contribute to DNA research, and how an acceptance of this fact was commonly preceded by resentment from the wider community. Cobb writes:

Matthew Meselson later explained the widespread surprise that was felt about Nirenberg’s success, in terms of the social dynamics of science: “… there is a terrible snobbery that either a person who’s speaking is someone who’s in the club and you know him, or else his results are unlikely to be correct. And here was some guy named Marshall Nirenberg; his results were unlikely to be correct, because he wasn’t in the club. And nobody bothered to be there to hear him.”

This explanation is reinforced by a private letter to Crick, written in November 1961 by the Nobel laureate Fritz Lipmann, which celebrated the impact of Nirenberg’s discovery but nevertheless referred to him as ‘this fellow Nirenberg’. In October 1961, Alex Rich wrote to Crick praising Nirenberg’s contribution but wondering, quite legitimately, ‘why it took the last year or two for anyone to try the experiment, since it was reasonably obvious’. Jacob later claimed that the Paris group had thought about it but only as a joke – ‘we were absolutely convinced that nothing would have come from that’, he said – presumably because Crick’s theory of a commaless code showed that a monotonous polynucleotide signal was meaningless. Brenner was frank: ‘It didn’t occur to us to use synthetic polymers.’ Nirenberg and Matthaei had seen something that the main participants in the race to crack the genetic code had been unable to imagine. Some later responses were less generous: Gunther Stent of the phage group implied to generations of students who read his textbook that the whole thing had happened more or less by accident, while others confounded the various phases of Matthaei and Nirenberg’s work and suggested that the poly(U) had been added as a negative control, which was not expected to work.

A number of such episodes studded throughout the book make it an invaluable addition to a science-enthusiast’s bookshelf. In fact, if something has to be wrong at all, it’s the book’s finishing. In a move that is becoming custom, the last hundred or so pages are devoted to discussing genetic modification and CRISPR/Cas9, a technique and a tool that will surely shape the future of modern genetics but in a way nobody is quite sure of yet. This uncertainty is pretty well-established in the sense that it’s okay to be confused about where the use of these entities is taking us. However, this also means that every detailed discussion about these entities has become repetitive. Neither Cobb nor Mukherjee are able to add anything new on this front that, in some sense, hasn’t already been touched upon. (Silver lining: the books do teach us to better articulate our confusion.)

Verdict: 4/5

Curious Bends – commoner panthers, space diplomacy, big data sells big cars and more

Curious Bends is a weekly newsletter about science, tech., data and India. Akshat Rathi and I curate it. You can subscribe to it here. If have feedback, suggestions, or would just generally like to get in touch, just email us.

1. Why the GM debate in India won’t abate

It is a sign of its inadequacy that the debate on genetically modified crops in India is still on, with no end in sight. Although public consensus is largely polarised, the government has done its bit to postpone resolution. For one, decisions on GM crops are made as if they were “technical answers to technical questions”. For another, no formal arena of debate exists that also addresses social anxieties. (8 min read)

2. One foot on Earth and another in the heavens

Camera traps installed by the Wildlife Conservation Society of India have shown that about one in ten of all leopard images belong to black leopards (that is, black panthers). These melanistic big cats have been spotted in wildlife reserves in Kerala and Karnataka, and seem commoner in the wetter forests of the Western Ghats. In fact, written records of sightings in these parts date from 1879, and could aid conservation efforts in a country that lost its cheetahs in 1960. (2 min read)

3. One foot on Earth and another in the heavens

For smaller and middle income nations, strengthening institutional and technical capacity on the ground might be a better option than to launch satellites because more than vanity, the choice makes them better positioned to gather useful data. And if such a nation is in South Asia, then India’s planned SAARC satellite could make that choice easier, providing a finer balance between “orbital dreams and ground realities”. (5 min read)

+ The author, Nalaka Gunawardene, is a journalist and science writer from Colombo, Sri Lanka.

4. Do big car-makers know their way around big data?

When sales slumped, Mahindra & Mahindra, an Indian car-maker, used data gleaned from the social media to strip its former best-selling XUV500 model of some features and sell it cheaper. The company declined to give further details. This isn’t unique—big car-makers around the world are turning to big data to widen margins. But do they know how best to use the data or is it just that putting the squeeze on this lemon is a fad? (6 min read)

5. A geothermal bounty in the Himalayas

As the developing world edges toward an energy sufficiency crisis, scientists, environmental conservationists and governments get closer to a Mexican standoff. This is no better highlighted than with the gigawatts of geothermal energy locked up in the Himalayas. A 20-MW plant could “save three million litres of diesel”, $2 million and 28,000 tons of carbon dioxide in northern India per year. Why isn’t it being used? (2 min read)

Chart of the week

“Both [female genital mutilation and child marriage] stem from deeply rooted social norms which can only be changed by educating parents about the harm they cause. Making foreign aid conditional on results gives governments an extra incentive not just to pass laws, but to enforce them. Police and women’s activists in some countries have set up phone hotlines and safe houses for victims or girls at risk. Most important … is to make sure that girls go to school and finish their studies.” The Economist has more.

20140726_IRC374

If you learnt something new from Curious Bends, why not spread the word? Share this week’s newsletter with your friends and ask them to subscribe. Have a nice day!

Let’s unMonsanto the debate.

On August 28, I had the opportunity to attend a discussion on the BRAI Bill, currently in Lok Sabha. It was held at The Hindu, and attended by some of my colleagues and some representatives from the Association of Biotechnology Led Enterprises (ABLE). The point of the discussion according to ABLE, which had arranged it, was to create awareness of the bill and dispel some popular misconceptions.

The bill, if passed, will set up a Biotechnology Regulatory Authority of India (BRAI), whose purpose will be to oversee and administer all biotechnology-related activities in India. These powers are wide-ranging, going from fixing prices for genetically engineered seeds to having a hold on export and import of transgenic foodstuff to dictating safety standards for the research, cultivation, production and consumption of genetically modified (GM) crops.

As things stand, the bill is being opposed on many fronts. A Technical Experts Committee constituted by the Supreme Court last year recommended a 10-year moratorium on all field trials of Bt transgenic foodstuff. This was accompanied by the Union Ministry of Environment and Forests suspending all field trials on GM crops, licenses for which were granted by the Genetic Engineering Appraisal Committee (GEAC). Both were centered around India supposedly lacking the infrastructure, skill and manpower to handle transgenic consumables.

Our discussion with ABLE snaked this way and that. It touched upon the GEAC, pesticides use, the possibility of ‘superbugs’, data availability, the Right to Information, and India’s agricultural needs and water-politics. At times, the participants seemed adversarial; at others, convivial. Unfortunately, there was one issue that constantly underpinned the conversation, this one very little to do with what India was or wasn’t capable of: Monsanto, Inc.

Guilt by association

One among the ABLE delegation, Dr. J.S. Rehman, an entemologist and a former member of the Review Committee on Genetic Manipulation (constituted by the Department of Biotechnology), seemed very concerned about this. Monsanto’s unenviable environmental legacy worldwide had riled up activists to protest its coming with such vehemence that, he lamented, Indian biotech. was also being suppressed in the process.

Here are two questions that were addressed to Dr. Rehman during the discussion:

Do you think the entire atmosphere over the biotechnology bill and its understanding or misunderstanding – however you look at it – is largely because of one big MNC called Monsanto?

JSR: “Our using Monsanto as a synonym with GM technology is one of the worst things we’re doing – not only for farmers but also for our people who are trying to develop genes, and who are trying to compete with Monsanto. Every time, everywhere we go, we see people asking very general questions, and we’re wasting out time in educating those people rather than putting our efforts into the development of technology and other things.”

How much have Monsanto’s businesses hijacked the debate over biotech.?

JSR: “We’re in a very bad situation, I think: Monsanto is only the gene developer. It’s not a seed developer. It has the gene which it has given to Mahyco. In Andhra Pradesh, earlier, once Bt cotton was given, for example, and Rs. 1,700 was fixed as cost-per-packet. This was because artificial competition was created in the market by introducing the Bt gene, after which all competitors had to adopt it or face losses. Then, Monsanto demanded a royalty of Rs. 1,200 per packet. So, if I have been selling a packet at Rs. 400, then my new minimum cost is Rs. 1,600. So, the competition was exploited by Monsanto.

These prices are very high for farmers, and allows people to comment that the Bt technology has spiked the cost of packeted seeds. Then, the State intervened, and after a case was filed, Monsanto was forced temporarily to reduce royalty from Rs. 1,200 to Rs. 100. This brought down the price of Bt packets to around Rs. 750-950 per packet. So, both seed companies and the farmers are benefited by the Bt technology. Farmer will also get the benefit of reducing it from Rs. 1,600 to Rs. 750. The only person losing here is Monsanto.

Then, some time after this, the seed-rate was increased. New norms recommended that instead of one packet per acre, farmers use two packets per acre. However, another way to look at this is to see that in a net area, one can go for more productivity.”

So, Indians are succumbing to the fallacy of guilt-by-association – just like with our nuclear program: “Just because the Department of Atomic Energy is doing a bad job of administering India’s nuclear program, the idea of nuclear power is bad.” As Dr. Rehman said, Monsanto may have superior technology. However, it is exploiting the latency of its Indian competitors, and the preferential access it received in the 90s from the Indian government to promote free trade, to come out on top. And when activists assume that all of GM is bad because Monsanto – its leading researcher – is bad, they are suffocating the Indian competition and empowering Monsanto.

Daylight robbery

One other example specific to Monsanto that emerged during the discussion was brought up by Dr. T.M. Manjunath, of ABLE. Dr. Manjunath was a former director at the Monsanto Research Centre, Bangalore.

He felt the need to correct Dr. Rehman on one count: that of the habit of comparing the prices of traditional cotton seeds with Bt cotton seeds. He said, “We shouldn’t compare the two without taking into account the associated benefits from each. For example, if farmers bought traditional seeds at Rs. 400 a packet, then they would also have to spend an additional Rs. 3,000 to Rs. 5,000 to insecticides. So, these [numbers] should be added to that cost. On the other hand, if you buy a packet of Bt cotton seeds at, say, Rs. 1,700, that is all farmers will have to expend there. You wouldn’t have to spray insecticides. Thereby, the farmers are immensely benefited.”

The problem here is that Monsanto is attempting to justify its exorbitant profit margins by citing a higher cost-benefit ratio, forgetting that it does not have a license to rip farmers off. Instead, if the technology has improved enough to keep the cost-benefit ratio high, then the farmer must be the full and final beneficiary. As one of the participants put it: “Monsanto can’t say ‘I’m still giving him a 4,000-rupee window!'”

At the same time, it’d be beneficial for Indian decision-makers to remember that Bt cotton did see some kind of success in India, seeing adoption by over 70 lakh farmers, and lasting well beyond its initially perceived lifetime – 6 to 7 years – before worms developed resistance to it. “One of our recommendations to minimise resistance-development was asking for 20 per cent refugee area. However, we also knew that asking farmers to sacrifice 20 per cent of their land in the name of the yield wasn’t always going to work. But to our surprise, the resistance developed [by pests and worms] has been minimal,” said Dr. Rehman.

There were Bt cotton crop failures, too, but the moral is that Monsanto sucks, yes, but the technology is promising and could be useful for India. For instance, even though Monsanto’s Bt has defied resistance for more than a decade, scientists think the threat is always imminent and that we need to be prepared. If the pall of Monsanto could be cleared (and its monstrous royalties on seeds sales avoided), perhaps an indigenous developer of transgenic seeds (about 20 varieties of which are thought to be in the pipeline) has the answer.

Failure of the stakeholders

The appropriate place from which to address this “hijacking” would be to look at how much of and how well the public sector has been activated – not to compete with Monsanto, which is already spending $1.3 billion a year on GM tech., but to make India become a self-sustaining developer of indigenous biotech. capabilities that can address its immediate needs (such as water sufficiency, which has been worsened by Bt cotton varieties).

In this regard, there has been a failure among stakeholders to explain to the people that it’s not about MNCs v. India, that the BRAI Bill is not only for Monsanto but also for Indian players. The details of how it will take from and give back to them are out of focus.

For example:

  1. Proposed: A single-window clearance system.

    Actually: Seen from the pro-GM (“ergo pro-Monsanto”) side, it could be argued that the government wants to facilitate Indian applications. Seen from the anti-Monsanto (“ergo anti-GM”) side, it looks as if the government wants to fast-track dubious applications. Which one is it?

  2. Proposed: BRAI “will not disclose confidential information made available in an application to the Authority.”

    Actually: The representatives from ABLE clarified that while some information would be hidden from the public domain, research on and results from field trials would be on display on a website for all to see, and the rest could be obtained using the RTI.

  3. Proposed: BRAI will be a centrally implemented body; State governments will have no say in its functioning and decision-making.

    Actually: A proposal for a State Biotechnology Regulatory Advisory Committee has been included in the BRAI Bill. The committee is to act as an intermediary agency between the State government and BRAI. It is not as if States have no say; however, to what extent will such a body empower the State?

  4. Proposed: Committees constituted by the BRAI Bill will approve and ratify applications from companies for the production and transportation of transgenic foodstuff.

    Actually: While committees will approve applications, a third-party (non-governmental) agency will be required to validate the results first. At the same time, the bill also okays all DSIR-approved labs for validation, which means a company with its own DSIR-approved lab can validate its own results (DSIR is the Department of Scientific and Industrial Research).

As it is, the bill is currently being examined by a Parliamentary Standing Committee on Agriculture, which would do well to ask for increased clarity on these issues. Dr. Rehman noted that even though the last deadline for public feedback, August 25, had passed, the Committee was considering extending the period for a second time (having earlier pushed it by 45 days from June 10). If and when a new date is announced, let’s unMonsanto.

I originally wrote this post for The Copernican, the science blog over The Hindu, on September 2, 2013.