Is it so blasphemous to think ISRO ought not to be compared to other space agencies?

ISRO is one of those few public sector organisations in India that actually do well and are (relatively) free of bureaucratic interference. Perhaps it was only a matter of time before we latched on to its success and even started projecting our yearning to be the “world’s best” upon it – whether or not it chose to be in a particular enterprise. I’m not sure if asserting the latter or not affects ISRO (of course not, who am I kidding) but its exposition is a way to understand what ISRO might be thinking, and what might be the best way to interpret and judge its efforts.

So last evening, I wrote and published an article on The Wire titled ‘Apples and Oranges: Why ISRO Rockets Aren’t Comparable to Falcons or Arianes‘. Gist: PSLV/GSLV can’t be compared to the rockets they’re usually compared to (Proton, Falcon 9, Ariane 5) because:

  1. PSLV is low-lift, the three foreign rockets are medium- to -heavy-lift; in fact, each of them can lift at least 1,000 kg more to the GTO than the GSLV Mk-III will be able to
  2. PSLV is cheaper to launch (and probably the Mk-III too) but this is only in terms of the rocket’s cost. The price of launching a kilogram on the rocket is thought to be higher
  3. PSLV and GSLV were both conceived in the 1970s and 1980s to meet India’s demands; they were never built to compete internationally like the Falcon 9 or the Ariane 5
  4. ISRO’s biggest source of income is the Indian government; Arianespace and SpaceX depend on the market and launch contracts from the EU and the US

While spelling out any of these points, never was I thinking that ISRO was inferior to the rest. My goal was to describe a different kind of pride, one that didn’t rest on comparisons but drew its significance from the idea that it was self-fulfilling. This is something I’ve tried to do before as well, for example with one of the ASTROSAT instruments as well as with ASTROSAT itself.

In fact, when discussing #3, it became quite apparent to me (thanks to the books I was quoting from) that comparing PSLV/GSLV with foreign rockets was almost fallacious. The PSLV was born out of a proposal Vikram Sarabhai drew up, before he died in 1970, to launch satellites into polar Sun-synchronous orbits – a need that became acute when ISRO began to develop its first remote-sensing satellites. The GSLV was born when ISRO realised the importance of its multipurpose INSAT satellites and the need to have a homegrown launcher for them.

Twitter, however, disagreed – often vehemently. While there’s no point discussing what the trolls had to say, all of the feedback I received there, as well as on comments on The Wire, seemed intent ISRO would have to be competing with foreign players and that simply was the best. (We moderate comments on The Wire, but in this case, I’m inclined to disapprove even the politely phrased ones because they’re just missing the point.) And this is exactly what I was trying to dispel through my article, so either I haven’t done my job well or there’s no swaying some people as to what ISRO ought to be doing.

screen-shot-2017-02-19-at-6-57-38-am

We’re not the BPO of the space industry nor is there a higher or lower from where we’re standing. And we don’t get the job done at a lower cost than F9 or A5 because, hey, completely different launch scenarios.

screen-shot-2017-02-19-at-7-03-10-am

Again, the same mistake. Don’t compare! At this point, I began to wonder if people were simply taking one look at the headline and going “Yay/Ugh, another comparison”. And I’m also pretty sure that this isn’t a social/political-spectrum thing. Quite a few comments I received were from people I know are liberal, progressive, leftist, etc., and they all said what this person ↑ had to say.

screen-shot-2017-02-19-at-7-07-12-am

Compete? Grab market? What else? Colonise Mars? Send probes to Jupiter? Provide internet to Africa? Save the world?

screen-shot-2017-02-19-at-7-54-05-am

Now you’re comparing the engines of two different kinds of rockets. Dear tweeter: the PSLV uses alternating solid and liquid fuel motors; the Falcon 9 uses a semi-cryogenic engine (like the SCE-200 ISRO is trying to develop). Do you remember how many failures we’ve had of the cryogenic engine? It’s a complex device to build and operate, so you need to make concessions for it in its first few years of use.

screen-shot-2017-02-19-at-7-09-18-am

“If [make comparison] why you want comparison?” After I’ve made point by [said comparison]: “Let ISRO do its thing.” Well done.

screen-shot-2017-02-19-at-7-11-55-am

This tweet was from a friend – who I knew for a fact was also trying to establish that Indian and foreign launchers are incomparable in that they are not meant to be compared. But I think it’s also an example of how the narrative has become skewed, often expressed only in terms of a hierarchy of engineering capabilities and market share, and not in terms of self-fulfilment. And in many other situations, this might have been a simple fact to state. In the one we’re discussing, however, words have become awfully polarised, twisted. Now, it seems, “different” means “crap”, “good” means nothing and “record” means “good”.

screen-shot-2017-02-19-at-7-18-56-am

Comments like this, representative of a whole bunch of them I received all of last evening, seem tinged with an inferiority complex, that we once launched sounding rockets carried on bicycles and now we’re doing things you – YOU – ought to be jealous of. And if you aren’t, and if you disagree that C37 was a huge deal, off you go with the rocket the next time!

3d91753a-ec8d-4cd6-82f2-76b1560b6108

The Times of India even had a cartoon to celebrate the C37 launch: it mocked the New York Times‘s attempt to mock ISRO when the Mars Orbiter Mission injected itself into an orbit around the red planet on September 27, 2014. The NYT cartoon had, in the first place, been a cheap shot; now, TOI is just saying cheap shots are a legitimate way of expressing something. It never was. Moreover, the cartoons also made a mess of what it means to be elite – and disrupted conversations about whether there ought to be such a designation at all.

As for comments on The Wire:

screen-shot-2017-02-19-at-8-39-13-am

Obviously this is going to get the cut.

screen-shot-2017-02-19-at-8-38-31-am

As it happens, this one is going to get the cut, too.

I do think the media shares a large chunk of the blame when it comes to how ISRO is perceived. News portals, newspapers, TV channels, etc., have all fed the ISRO hype over the years: here, after all, was a PSU that was performing well, so let’s give it a leg up. In the process, the room for criticising ISRO shrank and has almost completely disappeared today. The organisation has morphed into a beacon of excellence that can do no wrong, attracting jingo-moths to fawn upon its light.

We spared it the criticisms (offered with civility, that is) that would have shaped the people’s perception of the many aspects of a space programme: political, social, cultural, etc. At the same time, it is also an organisation that hasn’t bothered with public outreach much and this works backwards. Media commentaries seem to bounce off its stony edifice with no effect. In all, it’s an interesting space in which to be engaged, as a researcher or even as an enthusiast, but I will say I did like it better when the trolls were not interested in what ISRO was up to.

Featured image credit: dlr_de/Flickr, CC BY 2.0.

The GSLV Mk-III is no jugaad

Scroll
December 18, 2014

(Note: This piece was written in the future-tense and published before ISRO’s successful test flight this morning.)

Come Thursday, the Indian Space Research Organisation will launch its GSLV Mk-III rocket from its launch pad in Sriharikota. In the run-up, most media attention has been on a conical module the rocket will carry on board. But of greater interest is the rocket itself, which holds the key to making ISRO a serious contender in the international satellite-launch sector.

The module is part of the Crew-Module Atmospheric Reentry Experiment, which will see it being released at an altitude of 126 kilometres, upon which it will re-enter earth’s atmosphere and crash into the Bay of Bengal, some 200 kilometres west of the Andaman Islands.

Scientists at ISRO will monitor CARE during its journey and gather important data about its surface and interiors. If the module’s performance matches their predictions, India will be that much closer to using it as a crew capsule for a manned mission into space planned in the early 2020s.

Cashing in on the growth

Forgotten in the media buzz around the module is the rocket itself.

The Mk-III, a next-generation variant of ISRO’s fleet of geosynchronous satellite launch vehicles, boasts of India’s highest payload capacity yet: 10,000 kilograms to low-earth orbit and 4,000 kilograms to the highly elliptical geostationary-transfer orbit.

If the launch is successful – and if future test flights establish reliability – ISRO’s commercial space programme will be in a position to cash in on the rapidly growing global satellite-launching industry as well as give domestic engineers the leeway to design more sophisticated satellites.

This was an important consideration during the Mars Orbiter Mission. The orbiter itself, currently revolving around the Red Planet, weighs only 15 kilograms because the Polar Satellite Launch Vehicle’s payload limit to earth orbit is 1,350 kilograms. This includes all the other instruments on board to ensure a smooth journey. A heavier orbiter could have included more than the five instruments it did.

Dependence on others

In this regard, the GSLV Mk-III will be important because it will determine where India’s native space research programme is headed and how it plans to leverage the increased payload mass option.

It will also reduce India’s dependence on foreign launch vehicles to get heavier satellites into orbit, although self-reliance comes with problems of its own. The common choice in lieu of a reliable GSLV has been the French Arianespace programme, which currently serves almost 65% of the Asia-Pacific market. The Mk-III bears many structural similarities to the Ariane 6 variant. Also, both rockets have a liquid main-stage, a cryogenic upper-stage and two solid-fuel boosters.

The Ariane 6 can lift 6,500 kilograms to the geostationary-transfer orbit, and each launch costs India about $95 million. Assuming the cost-per-launch of the Mk-III is comparable to the Mk-II’s, the number approximately comes down to $40 million (this is likely to be slightly higher). Compare this to the global average price-per-launch of vehicles capable of reaching the geostationary-transfer orbit: $145.57 million, as of 2013.

Skyrocketing profits

From 1999 to 2014, ISRO launched 40 foreign satellites, all with PSLV rockets, and earned EUR 50.47 million and $17.17 million (or Rs 505.74 crore) from 19 countries. Antrix, the commercial arm of ISRO in charge of handling the contracts with foreign space agencies, has reported profits ranging from Rs 19 crore to Rs 169 crore between 2002 and 2009.

This is a pittance compared to what Arianespace made in 2013 alone: EUR 680.1 million. A reliable launch vehicle to the geostationary-transfer orbit can change this for the better and position ISRO as a serious contender in the space-launch sector, assuming it is accompanied by a more efficient Antrix and an ISRO that is willing to work with foreign counterparts, both private and governmental.

It must also consider expanding its launch capabilities to the geostationary-transfer orbit and prepare to keep up with the 5-15% growth rate recorded in the last five years in the satellites industry. Now is an opportune time, too, to get on the wagon: the agency’s flags are flying high on the success of the Mars Orbiter Mission.

Facing other challenges

ISRO has to be ready to confront the likes of SpaceX, a space transport services company which already has the Falcon 9 rocket that can launch 13,150 kilograms to low-earth orbit and 4,850 kilograms to the geostationary-transfer orbit at starting costs of $57 million per launch.

On another front, ISRO will have to move the public dialogue away from its fixation on big science missions and toward less grandiose but equally significant ones. These will help establish the space agency’s mettle in reliably executing higher-altitude launches, enhancing India’s capabilities in the space-launch and space-research sectors. These will also, in turn, serve to make high-cost missions more meaningful than simple proofs of concepts.

For example, ISRO Chairman K Radhakrishnan has announced that a project report compiled by the agency envisages a Rs 12,400-crore manned space mission by 2021. In the next seven years, thus, ISRO aims to master concepts of re-entry technology, human spaceflight and radiation protection. This will happen not just through repeated test flights and launches of crew modules but also using satellites, space-borne observatories and data analysis.

For all these reasons, the GSLV Mk-III marks an important step by ISRO, one that will expose it to greater competition from European and American launchers, increase its self-reliance in a way that it will have to justify its increasing launch capabilities with well-integrated projects, and help the agency establish a legacy over and beyond the jugaad that took it to Mars.

The Mars Orbiter Mission was launched around the same time as NASA’s MAVEN mission to Mars, and with comparable instrumental specifications. While MOM cost ISRO $74 million, MAVEN cost NASA $672 million. In fact, ISRO’s orbiter was by far the least expensive Mars satellite ever built.