Dr. Stone on the Higgs search

On December 10, 2012, I spoke to a bunch of physicists attending the Frontiers of High-energy Physics symposium at the Institute of Mathematical Sciences, Chennai. They included Rahul Sinha, G. Rajasekaran, Tom Kibble, Sheldon Stone, Marina Artuso, M.V.N. Murthy, Kajari Mazumdar, and Hai-Yang Cheng, amongst others.

All their talks, obviously, focused on either the search for the Higgs boson or the search for dark matter, with the former being assured and celebratory and the latter, contemplative and cautious. There was nothing new left to be said – as a peg for a news story – given that what of 2012 had gone before that day had already read hundreds of stories on the two searches.

Most of the memorable statements by physicists I remember from that day came from Dr. Sheldon Stone, Syracuse University, and member, LHCb collaboration.

A word on the LHCb before I go any further: It’s one of the seven detector-experiments situated on the Large Hadron Collider’s (LHC’s) ring. Unlike the ATLAS and CMS, whose focus is on the Higgs boson, the LHCb collaboration is studying the decay of B-mesons and signs of CP-symmetry violations at high energies.

While he had a lot to say, he also best summed up what physicists worldwide might’ve felt when the theorised set of particles’ rules called the Standard Model (SM) was having its predictions validated one after the other, leaving no room for a new theory to edge its way in. While very elegant by itself, the SM has no answers to some of the more puzzling questions, such as that of dark matter or of mass-hierarchy problem.

In other words, the more it stands validated, the fewer cracks there are for a new and better theory, like Supersymmetry, to show itself.

In Dr. Stone’s words, “It’s very depressing. The Standard Model has been right on target, and so far, nothing outside the model has been observed. It’s very surprising that everything works, but at the same time, we don’t know why it works! Everywhere, physicists are depressed and clueless, intent on digging deeper, or both. I’m depressed, too, but I also want to dig deeper.”

In answer to some of my questions on what the future held, Dr. Stone said, “Now that we know how things actually work, we’re starting to play some tricks. But beyond that, moving ahead, with new equipment, etc., is going to cost a lot of money. We’ve to invest in the collider, in a lot of detector infrastructure, and computing accessories. In 2012, we had a tough time keeping with the results the LHC was producing. For the future, we’re counting on advancements in computer science and the LHC Grid.”

One interesting thing that he mentioned in one of his answers was that the LHC costs less than one aircraft-carrier. I thought that’d put things in perspective – how much some amount of investment in science could achieve when compared to what the same amount could achieve in other areas. This is not to discourage the construction of aircraft carriers, but to rethink the opportunities science research has the potential to unravel.

(This blog post first appeared at The Copernican on December 22, 2012.)

When must science give way to religion?

When I saw an article titled ‘Sometimes science must give way to religion‘ in Nature on August 22, 2012, by Daniel Sarewitz, I had to read it. I am agnostic, and I try as much as I can to keep from attempting to proselyte anyone – through argument or reason (although I often fail at controlling myself). However, titled as it was, I had to read the piece, especially since it’d appeared in a publication I subscribe to for their hard-hitting science news, which I’ve always approached as Dawkins might: godlessly.

First mistake.

Dr. Daniel Sarewitz

At first, if anything, I hoped the article would treat the entity known as God as simply an encapsulation of the unknown rather than in the form of an icon or elemental to be worshiped. However, the lead paragraph was itself a disappointment – the article was going to be about something else, I understood.

Visitors to the Angkor temples in Cambodia can find themselves overwhelmed with awe. When I visited the temples last month, I found myself pondering the Higgs boson — and the similarities between religion and science.

The awe is architectural. When pilgrims visit a temple built like the Angkor, the same quantum of awe hits them as it does an architect who has entered a Pritzker-prize winning building. But then, this sort of “reasoning”, upon closer observation or just an extra second of clear thought, is simply nitpicking. It implies that I’m just pissed that Nature decided to publish an article and disappoint ME. So, I continued to read on.

Until I stumbled upon this:

If you find the idea of a cosmic molasses that imparts mass to invisible elementary particles more convincing than a sea of milk that imparts immortality to the Hindu gods, then surely it’s not because one image is inherently more credible and more ‘scientific’ than the other. Both images sound a bit ridiculous. But people raised to believe that physicists are more reliable than Hindu priests will prefer molasses to milk. For those who cannot follow the mathematics, belief in the Higgs is an act of faith, not of rationality.

For a long time, I have understood that science and religion have a lot in common: they’re both frameworks that are understood through some supposedly indisputable facts, the nuclear constituents of the experience born from believing in a world reality that we think is subject to the framework. Yes, circular logic, but how are we to escape it? The presence of only one sentient species on the planet means a uniform biology beyond whose involvement any experience is meaningless.

So how are we to judge which framework is more relevant, more meaningful? To me, subjectively, the answer is to be able to predict what will come, what will happen, what will transpire. For religion, these are eschatological and soteriological considerations. As Hinduism has it: “What goes around comes around!” For science, these are statistical and empirical considerations. Most commonly, scientists will try to spot patterns. If one is found, they will go about pinning the pattern’s geometric whims down to mathematical dictations to yield a parametric function. And then, parameters will be pulled out of the future and plugged into the function to deliver a prediction.

Earlier, I would have been dismissive of religion’s “ability” to predict the future. Let’s face it, some of those predictions and prophecies are too far into the future to be of any use whatsoever, and some other claims are so ad hoc that they sound too convenient to be true… but I digress. Earlier, I would’ve been dismissive, but after Sarewitz’s elucidation of the difference between rationality and faith, I am prompted to explain why, to me, it is more science than religion that makes the cut. Granted, both have their shortcomings: empiricism was smashed by Popper, while statistics and unpredictability are conjugate variables.

(One last point on this matter: If Sarewitz seems to suggest that the metaphorical stands in the way of faith evolving into becoming a conclusion of rationalism, then he also suggests lack of knowledge in one field of science merits a rejection of scientific rationality in that field. Consequently, are we to stand in eternal fear of the incomprehensible, blaming its incomprehensibility on its complexity? He seems to have failed to realize that a submission to the simpler must always be a struggle, never a surrender.)

Sarewitz ploughed on, and drew a comparison more germane and, unfortunately, more personal than logical.

By contrast, the Angkor temples demonstrate how religion can offer an authentic personal encounter with the unknown. At Angkor, the genius of a long-vanished civilization, expressed across the centuries through its monuments, allows visitors to connect with things that lie beyond their knowing in a way that no journalistic or popular scientific account of the Higgs boson can. Put another way, if, in a thousand years, someone visited the ruins of the Large Hadron Collider, where the Higgs experiment was conducted, it is doubtful that they would get from the relics of the detectors and super­conducting magnets a sense of the subatomic world that its scientists say it revealed.

Granted, if a physicist were to visit the ruins of the LHC, he may be able to put two and two together at the sight of the large superconducting magnets, striated with the shadows of brittle wires and their cryostatic sleeves, and guess the nature of the prey. At the same time, an engagement with the unknown at the Angkor Wat (since I haven’t been there, I’ll extrapolate my experience at the Thillai Nataraja Temple, Chidambaram, South India, from a few years back) requires a need to engage with the unknown. A pilgrim visiting millennia-old temples will feel the same way a physicist does when he enters the chamber that houses the Tevatron! Are they not both pleasurable?

I think now that what Sarewitz is essentially arguing against is the incomparability of pleasures, of sensations, of entire worlds constructed on the basis two very different ideologies, rather requirements, and not against the impracticality of a world ruled by one faith, one science. This aspect came in earlier in this post, too, when I thought I was nitpicking when I surmised Sarewitz’s awe upon entering a massive temple was unique: it may have been unique, but only in sensation, not in subject, I realize now.

(Also, I’m sure we have enough of those unknowns scattered around science; that said, Sarewitz seems to suggest that the memorability of his personal experiences in Cambodia are a basis for the foundation of every reader’s objective truth. It isn’t.)

The author finishes with a mention that he is an atheist. That doesn’t give any value to or take away any value from the article. It could have been so were Sarewitz to pit the two worlds against each other, but in his highlighting their unification – their genesis in the human mind, an entity that continues to evade full explicability – he has left much to be desired, much to be yearned for in the form of clarification in the conflict of science with religion. If someday, we were able to fully explain the working and origin of the human mind, and if we find it has a fully scientific basis, then where will that put religion? And vice versa, too.

Until then, science will not give way for religion, nor religion for science, as both seem equipped to explain.

Gunning for the goddamned: ATLAS results explained

Here are some of the photos from the CERN webcast yesterday (July 4, Wednesday), with an adjoining explanation of the data presented in each one and what it signifies.

This first image shows the data accumulated post-analysis of the diphoton decay mode of the Higgs boson. In simpler terms, physicists first put together all the data they had that resulted from previously known processes. This constituted what’s called the background. Then, they looked for signs of any particle that seemed to decay into two energetic photons, or gamma rays, in a specific energy window; in this case, 100-160 GeV.

Finally, knowing how the number of events would vary in a scenario without the Higgs boson, a curve was plotted that fit the data perfectly: the number of events at each energy level v. the energy level at which it was tracked. This way, a bump in the curve during measurement would mean there was a particle previously unaccounted for that was causing an excess of diphoton decay events at a particular energy.

This is the plot of the mass of the particle being looked for (x-axis) versus the confidence level with which it has (or has not, depending n how you look at it) been excluded as an event to focus on. The dotted horizontal line, corresponding to 1μ, marks off a 95% exclusion limit: any events registered above the line can be claimed as having been observed with “more than 95% confidence” (colloquial usage).

Toward the top-right corner of the image are some numbers. 7 TeV and 8 TeV are the values of the total energy going into each collision before and after March, 2012, respectively. The beam energy was driven up to increase the incidence of decay events corresponding to Higgs-boson-like particles, which, given the extremely high energy at which they exist, are viciously short-lived. In experiments that were run between March and July, physicists at CERN reported an increase of almost 25-30% of such events.

The two other numbers indicate the particle accelerator’s integrated luminosity. In particle physics, luminosity is measured as the number of particles that can pass detected through a unit of area per second. The integrated luminosity is the same value but measured over a period of time. In the case of the LHC, after the collision energy was vamped up, the luminosity, too, had to be increased: from about 4.7 fb-1 to 5.8 fb-1. You’ll want to Wiki the unit of area called barn. Some lighthearted physics talk there.

In this plot, the y-axis on the left shows the chances of error, and the corresponding statistical significance on the right. When the chances of an error stand at 1, the results are not statistically significant at all because every observation is an error! But wait a minute, does that make sense? How can all results be errors? Well, when looking for one particular type of event, any event that is not this event is an error.

Thus, as we move toward the ~125 GeV mark, the number of statistically significant results shoot up drastically. Looking closer, we see two results registered just beyond the 5-sigma mark, where the chances of error are 1 in 3.5 million. This means that if the physicists created just those conditions that resulted in this >5σ (five-sigma) observation 3.5 million times, only once will a random fluctuation play impostor.

Also, notice how the differences between each level of statistical significance increases with increasing significance? For chances of errors: 5σ – 4σ > 4σ – 3σ > … > 1σ – 0σ. This means that the closer physicists get to a discovery, the exponentially more precise they must be!

OK, this is a graph showing the mass-distribution for the four-lepton decay mode, referred to as a channel by those working on the ATLAS and CMS collaborations (because there are separate channels of data-taking for each decay-mode). The plotting parameters are the same as in the first plot in this post except for the scale of the x-axis, which goes all the way from 0 to 250 GeV. Now, between 120 GeV and 130 GeV, there is an excess of events (light blue). Physicists know it is an excess and not at par with expectations because theoretical calculations made after discounting a Higgs-boson-like decay event show that, in that 10 GeV, only around 5.3 events are to be expected, as opposed to the 13 that turned up.

After the Higgs-boson-like particle, what’s next?

This article, as written by me, appeared in print in The Hindu on July 5, 2012.

The ATLAS (A Toroidal LHC Apparatus) collaboration at CERN has announced the sighting of a Higgs boson-like particle in the energy window of 125.3 ± 0.6 GeV. The observation has been made with a statistical significance of 5 sigma. This means the chances of error in their measurements are 1 in 3.5 million, sufficient to claim a discovery and publish papers detailing the efforts in the hunt.

Rolf-Dieter Heuer, Director General of CERN since 2009, said at the special conference called by CERN in Geneva, “It was a global effort, it is a global effort. It is a global success.” He expressed great optimism and concluded the conference saying this was “only the beginning.”

With this result, collaborations at the Large Hadron Collider (LHC), the atom-smashing machine, have vastly improved on their previous announcement on December 13, 2011, where the chance of an error was 1-in-50 for similar sightings.

A screenshot from the Dec 13, 2011, presentation by Fabiola Gianotti, leader of the ATLAS collaboration, that shows a global statistical significance of 2.3 sigma, which translates to a 1-in-50 chance of the result being erroneous.

Another collaboration, called CMS (Compact Muon Solenoid), announced the mass of the Higgs-like particle with a 4.9 sigma result. While insufficient to claim a discovery, it does indicate only a one-in-two-million chance of error.

Joe Incandela, CMS spokesman, added, “We’re reaching into the fabric of the universe at a level we’ve never done before.”

The LHC will continue to run its experiments so that results revealed on Wednesday can be revalidated before it shuts down at the end of the year for maintenance. Even so, by 2013, scientists, such as Dr. Rahul Sinha, a participant of the Belle Collaboration in Japan, are confident that a conclusive result will be out.

“The LHC has the highest beam energy in the world now. The experiment was designed to yield quick results. With its high luminosity, it quickly narrowed down the energy-ranges. I’m sure that by the end of the year, we will have a definite word on the Higgs boson’s properties,” he said.

However, even though the Standard Model, the framework of all fundamental particles and the dominating explanatory model in physics today, predicted the particle’s existence, slight deviations have been observed in terms of the particle’s predicted mass. Even more: zeroing in on the mass of the Higgs-like particle doesn’t mean the model is complete when, in fact, it is far from.

While an answer to the question of mass formation took 50 years to be reached, physicists are yet to understand many phenomena. For instance, why aren’t the four fundamental forces of nature equally strong?

The weak, nuclear, electromagnetic, and gravitational forces were born in the first few moments succeeding the Big Bang 13.75 billion years ago. Of these, the weak force is, for some reason, almost 1 billion, trillion, trillion times stronger than the gravitational force! Called the hierarchy problem, it evades a Standard Model explanation.

In response, many theories were proposed. One, called supersymmetry (SUSY), proposed that all fermions, which are particles with half-integer spin, were paired with a corresponding boson, or particles with integer spin. Particle spin is the term quantum mechanics attributes to the particle’s rotation around an axis.

Technicolor was the second framework. It rejects the Higgs mechanism, a process through which the Higgs boson couples stronger with some particles and weaker with others, making them heavier and lighter, respectively.

Instead, it proposes a new form of interaction with initially-massless fermions. The short-lived particles required to certify this framework are accessible at the LHC. Now, with a Higgs-like particle having been spotted with a significant confidence level, the future of Technicolor seems uncertain.

However, “significant constraints” have been imposed on the validity of these and such theories, labeled New Physics, according to Prof. M.V.N. Murthy of the Institute of Mathematical Sciences (IMS), whose current research focuses on high-energy physics.

Some other important questions include why there is more matter than antimatter in this universe, why fundamental particles manifest in three generations and not more or fewer, and the masses of the weakly-interacting neutrinos. State-of-the-art technology worldwide has helped physicists design experiments to study each of these problems better.

For example, the India-based Neutrino Observatory (INO), under construction in Theni, will house the world’s largest static particle detector to study atmospheric neutrinos. Equipped with its giant iron-calorimeter (ICAL) detector, physicists aim to discover which neutrinos are heavier and which lighter.

The LHC currently operates at the Energy Frontier, with high-energy being the defining constraint on experiments. Two other frontiers, Intensity and Cosmic, are also seeing progress. Project X, a proposed proton accelerator at Fermilab in Chicago, Illinois, will push the boundaries of the Intensity Frontier by trying to look for ultra-rare process. On the Cosmic Frontier, dark matter holds the greatest focus.

Hunt for the Higgs boson: A quick update

And it was good news after all! In an announcement made earlier today at the special conference called by CERN near Geneva, the discovery of a Higgs-boson-like particle was announced by physicists from the ATLAS and CMS collaborations that spearheaded the hunt. I say discovery because the ATLAS team spotted an excess of events near the 125-GeV mark with a statistical significance of 5 sigma. This puts the chances of the observation being a random fluctuation at 1 in 3.5 million, a precision that asserts (almost) certainty.

Fabiola Gianotti announced the preliminary results of the ATLAS detector, as she did in December, while Joe Incandela was her CMS counterpart. The CMS results showed an excess of events around 125 GeV (give or take 0.6 GeV) at 4.9 sigma. While the chances of error in this case are 1 in 2 million, it can’t be claimed a discovery. Even so, physicists from both detectors will be presenting their efforts in the hunt as papers in the coming weeks. I’ll keep an eye out for their appearance on arXiv, and will post links to them.

After the beam energy in the Large Hadron Collider (LHC) was increased from 3.5 TeV/beam to 4 TeV/beam in March, only so many collisions could be conducted until July. As a result, the sample set available for detailed analysis was lower than could be considered sufficient. This is the reason some stress is placed on saying “boson-like” instead of attributing the observations to the boson itself. Before the end of the year, when the LHC will shut down for routine maintenance, however, scientists expect a definite word on the particle being the Higgs boson itself.

(While we’re on the subject: too many crass comments have been posted on the web claiming a religious element in the naming of the particle as the “God particle”. To those for whom this monicker makes sense: know that it doesn’t. When it was first suggested by a physicist, it stood as the “goddamn particle”, which a sensitive publisher corrected to the “God particle”).

The mass of the boson-like particle seems to deviate slightly from Standard Model (SM) predictions. This does not mean that SM stands invalidated. In point of fact, SM still holds strong because it has been incredibly successful in being able to predict the existence and properties of a host of other particles. One deviation cannot and will not bring it down. At the same time, it’s far from complete, too. What the spotting of a Higgs-boson-like particle in said energy window has done is assure physicists and others worldwide that the predicted mechanism of mass-generation is valid and within the SM ambit.

Last: the CERN announcement was fixed for today not without another reason. The International Conference on High Energy Physics (ICHEP) is scheduled to commence tomorrow in Melbourne. One can definitely expect discussions on the subject of the Higgs mechanism to be held there. Further, other topics also await to be dissected and their futures laid out – in terms vague or concrete. So, the excitement in the scientific community is set to continue until July 11, when ICHEP is scheduled to close.

Be sure to stay updated. These are exciting times!

So, is it going to be good news tomorrow?

As the much-anticipated lead-up to the CERN announcement on Wednesday unfolds, the scientific community is rife with many speculations and few rumours. In spite of this deluge, it may be that we could expect a confirmation of the God particle’s existence in the seminar called by physicists working on the Large Hadron Collider (LHC).

The most prominent indication of good news is that five of the six physicists who theorized the Higgs mechanism in a seminal paper in 1964 have been invited to the meeting. The sixth physicist, Robert Brout, passed away in May 2011. Peter Higgs, the man for whom the mass-giving particle is named, has also agreed to attend.

The other indication is much more subtle but just as effective. Dr. Rahul Sinha, a professor of high-energy physics and a participant in the Japanese Belle collaboration, said, “Hints of the Higgs boson have already been spotted in the energy range in which LHC is looking. If it has to be ruled out, four-times as much statistical data should have been gathered to back it up, but this has not been done.”

The energy window which the LHC has been combing through was based on previous searches for the particle at the detector during 2010 and at the Fermilab’s Tevatron before that. While the CERN-based machine is looking for signs of two-photon decay of the notoriously unstable boson, the American legend looked for signs of the boson’s decay into two bottom quarks.

Last year, on December 13, CERN announced in a press conference that the particle had been glimpsed in the vicinity of 127 GeV (GeV, or giga-electron-volt, is used as a measure of particle energy and, by extension of the mass-energy equivalence, its mass).

However, scientists working on the ATLAS detector, which is heading the search, could establish only a statistical significance of 2.3 sigma then, or a 1-in-50 chance of error. To claim a discovery, a 5-sigma result is required, where the chances of errors are one in 3.5 million.

Scientists, including Dr. Sinha and his colleagues, are hoping for a 4-sigma result announcement on Wednesday. If they get it, the foundation stone will have been set for physicists to explore further into the nature of fundamental particles.

Dr. M.V.N. Murthy, who is currently conducting research in high-energy physics at the Institute of Mathematical Sciences (IMS), said, “Knowing the mass of the Higgs boson is the final step in cementing the Standard Model.” The model is a framework of all the fundamental particles and dictates their behaviour. “Once we know the mass of the particle, we can move on and explore the nature of New Physics. It is just around the corner,” he added.