What can science education do, and what can it not?

On September 29, 2021, The Third Eye published an interview with Milind Sohoni, a teacher at the Centre for Technology Alternatives for Rural Areas and at IIT Bombay. (Thanks to @labhopping for bringing it into my feed.) I found it very thought-provoking. I’m pasting below some excerpts from the interview together with my notes. I think what Prof. Sohoni says doesn’t build up to a coherent whole. He is at times simplistic and self-contradictory, and what he says is often descriptive instead of offering a way out. Of course I don’t know whether what I say builds up to a coherent whole either but perhaps you’ll realise details here that I’ve missed.


… I wish the textbooks had exercises like let’s visit a bus depot, or let’s visit a good farmer and find out what the yields are, or let’s visit the PHC sub-centre, talk to the nurse, talk to the compounder, talk to the two doctors, just getting familiar with the PHC as something which provides a critical health service would have helped a lot. Or spend time with an ASHA worker. She has a notepad with names of people in a village and the diseases they have, which family has what medical emergency. How is it X village has so much diabetes and Y village has none?

I’m sure you’ll agree this would be an excellent way to teach science — together with its social dependencies instead of introducing the latter as an add-on at the level of higher, specialised education.

… science education is not just about big science, and should not be about big science. But if you look at the main central government departments populated by scientists, they are Space, Atomic Energy and Defence. Okay, so we have missile men and women, big people in science, but really, so much of science in most of the developed world is really sadak, bijli, pani.

I disagree on three counts. (i) Science education should include ‘big science’; if it doesn’t we lose access to a domain of knowledge and enterprise that plays an important role in future-proofing societies. We choose the materials with which we will build buildings, lay roads, and make cars and batteries and from which we will generate electric power based on ‘big science’. (ii) Then again, what is ‘big science’? I’m not clear what Sohoni means by that in this comment. But later in the interview he refers to Big Science as a source of “certainty” (vis-à-vis life today) delivered in the form of “scientific things … which we don’t understand”.

If by “Big Science” he means large scientific experiments that have received investments worth millions of dollars from multiple governments, and which are churning out results that don’t inform or enhance contemporary daily life, his statement seems all the more problematic. If a government invests some money in a Big Science project but then pulls out, it doesn’t necessarily or automatically redirect those funds to a project that a critic has deemed more worthwhile, like say multiple smaller science projects. Government support for Big Science has never operated that way. Further, Big Science frequently and almost by design inevitably leads to a lot of derivative ‘Smaller Science’, spinoff technologies, and advances in allied industries. Irrespective of whether these characteristics — accidental or otherwise — suffice to justify supporting a Big Science project, wanting to expel such science from science education is still reckless.

(iii) Re: “… so much of science in most of the developed world is really streets, electricity, water” — Forget proving/disproving this and ask yourself: how do we separate research in space, atomic energy, and defence from knowledge that gave rise to better roads, cheaper electricity, and cleaner water? We can’t. There is also a specific history that explains why each of these departments Sohoni has singled out were set up the way they were. And just because they are staffed with scientists doesn’t mean they are any good or worth emulating. (I’m also setting aside what Sohoni means by “much”. Time consumed in research? Money spent? Public value generated? Number of lives improved/saved?).

Our science education should definitely include Big Science: following up from the previous quote, teachers can take students to a radio observatory nearby and speak to the scientists about how the project acquired so much land, how it secured its water and power requirements, how administrators negotiated with the locals, etc. Then perhaps we can think about avoiding cases like the INO.

The Prohibition of Employment as Manual Scavengers Act came along ago, and along with it came a list of 42 [pieces of] equipment, which every municipality should have: a mask, a jetting machine, pumps and so on. Now, even IIT campuses don’t have that equipment. Is there any lab that has a ‘test mask’ even? Our men are going into talks and dying because of [lethal] fumes. A ‘test mask’ is an investment. You need a face-like structure and an artificial lung exposed to various environments to test its efficacy. And this mask needs to be standard equipment in every state. But these are things we never asked IITs to do, right?

This comment strikes a big nail on the head. It also brings to mind an incident on the Anna University campus eight years ago. To quote from Thomas Manuel’s report in The Wire on the incident: “On June 21, 2016, two young men died. Their bodies were found in a tank at the Anna University campus in Chennai. They were employees of a subcontractor who had been hired to seal the tank with rubber to prevent any leakage of air. The tank was being constructed as a part of a project by the Ministry of Renewable Energy to explore the possibilities of using compressed air to store energy. The two workers, Ramesh Shankar and Deepan, had arrived at the site at around 11.30 am and begun work. By 3.30 pm, when they were pulled out of the tank, Deepan was dead and Ramesh Shankar, while still breathing at the time, died a few minutes later.”

This incident seemed, and still seems, to say that even within a university — a place where scientists and students are keenly aware of the rigours of science and the value it brings to society — no one thinks to ensure the people hired for what is casually called “menial” labour are given masks or other safety equipment. The gaps in science education Sohoni is talking about are evident in the way scientists think about how they can ensure society is more rational. A society rife with preventable deaths is not rational.

I think what science does is that it claims to study reality. But most of reality is socially administered, and so we need to treat this kind of reality also as a part of science.

No, we don’t. We shouldn’t. Science offers a limited set of methods and analytical techniques with which people can probe and describe reality and organise the knowledge they generate. He’s right, most of reality is socially administered, but that shouldn’t be an invitation to forcibly bring what currently lies beyond science to within the purview of science. The scientific method can’t deal with them — but importantly it shouldn’t be expected to. Science is incapable of handling multiple, equally valid truths pertaining to the same set of facts. In fact a few paras later Sohoni ironically acknowledges that there are truths beyond science and that their existence shouldn’t trouble scientists or science itself:

… scientists have to accept that there are many things that we don’t know, and they still hold true. Scientists work empirically and sometimes we say okay, let’s park it, carry on, and maybe later on we will find out the ‘why’. The ‘why’ or the explanation is very cultural…

… whereas science needs that ‘why’, and needs it to be singular and specific. If these explanations for aspects of reality don’t exist in a form science can accommodate, yet we also insist as Sohoni did when he said “we need to treat this kind of reality also as a part of science”, then we will be forced to junk these explanations for no fault except that they don’t meet science’s acceptability criteria.

Perhaps there is a tendency here as if to say we need a universal theory of everything, but do we? We can continue to use different human intellectual and social enterprises to understand and take advantage of different parts of human experience. Science and for that matter the social sciences needn’t be, and aren’t, “everything”.

Science has convinced us, and is delivering on its promise of making us live longer. Whether those extra five years are of higher quality is not under discussion. You know, this is the same as people coming from really nice places in the Konkan to a slum in Mumbai and staying there because they want certainty. Life in rural Maharashtra is very hard. There’s more certainty if I’m a peon or a security guard in the city. I think that science is really offering some ‘certainty’. And that is what we seem to have accepted.

This seems to me to be too simplistic. Sohoni says this in reply to being asked whether science education today leans towards “technologies that are serving Big Business and corporate profits, rather than this developmental model of really looking critically at society”. And he would have been fairer to say we have many more technological devices and products around us today, founded on what were once scientific ideas, that serve corporate profits more than anything else. The French philosopher Jacques Ellul elucidated this idea brilliantly in his book The Technological Society (1964).

It’s just that Sohoni’s example of ageing is off the mark, and in the process it is harder to know what he’s really getting at. Lifespan is calculated as the average number of years an individual in a particular population lives. It can be improved by promoting factors that help our bodies become more resilient and by dissuading factors that cause us to die sooner. If lifespan is increasing today, it’s because fewer babies are succumbing to vaccine-preventable diseases before they turn five, because there are fewer road accidents thanks to vehicle safety, and because novel treatments like immunotherapy are improving the treatment rates of various cancers. Any new scientific knowledge in the prevailing capitalist world-system is susceptible to being coopted by Big Business but I’m also glad the knowledge exists at all.

Sure, we can all live for five more years on average, but if those five years will be spent in, say, the humiliating conditions of palliative care, let’s fix that problem. Sohoni says science has strayed from that path and I’m not so sure — but I’m convinced there’s enough science to go around (and enough money for it, just not the political will): scientists can work on both increasing lifespan and improving the conditions of palliative care. We shouldn’t vilify one kind of science in order to encourage the other. Yet Sohoni persists with this juxtaposition as he says later:

… we are living longer, we are still shitting on the road or, you know, letting our sewage be cleaned by fellow humans at the risk of death, but we are living longer. And that is, I think, a big problem.

We are still shitting on the road and we are letting our sewage be cleaned by fellow humans at the risk of death. These are big problems. Us living longer is not a big problem.

Big Technology has a knack of turning us all into consumers of science, by neutralising questions on ‘how’ and ‘why’ things work. We accept it and we enjoy the benefits. But see, if you know the benefits are divided very unevenly, why doesn’t it bother us? For example, if you buy an Apple iPhone for Rs. 75,000 how much does the actual makers of the phone (factory workers) get? I call it the Buddhufication Crisis: a lot of people are just hooked on to their smartphones, and live in a bubble of manufactured certainty; and the rest of society that can’t access smartphones, is left to deal with real-world problems.

By pushing us to get up, get out, and engage with science where it is practised, a better science education can inculcate a more inquisitive, critical-thinking population that applies the good sense that comes of a good education to more, or all, aspects of society and social living. This is why Big Technology in particular does not tempt us into becoming “consumers” of science rather than encouraging us to pick at its pieces. Practically everything does. Similarly Sohoni’s “Buddhufication” description is muddled. Of course it’s patronising towards the people who create value — especially if it is new and/or takes unexpected forms — out of smartphones and use it as a means of class mobility, and seems to suggest a person striving for any knowledge other than of the scientific variety is being a “buddhu”. And what such “buddhufication” has to do with the working conditions of Apple’s “factory workers” is unclear.

Speaking of relationships:

Through our Public Health edition, we also seem to sit with the feeling that science is not serving rural areas, not serving the poor. In turn, there is also a lower expectation of science from the rural communities. Do you feel this is true?

Yes, I think that is true to a large extent. But it’s not to do with rural. You see, for example, if you look at western Maharashtra — the Pune-Nashik belt — some of the cleverest people live there. They are basically producing vegetables for the big urban markets: in Satara, Sangli, that entire irrigated area. And in fact, you will see that they are very careful about their future, and understand their place in society and the role of the state. And they expect many things from the state or the government; they want things to work, hospitals to work, have oxygen, etc. And so, it is really about the basic understanding of cause and effect of citizenship. They understand what is needed to make buses work, or hospitals function; they understand how the state works. This is not very different from knowing how gadgets work.

While the distinction to many others may be trivial, “science” and “scientists” are not the same thing. This equation is present throughout the interview. At first I assumed it was casual and harmless but at this point, given the links between science, science education, technology, and public welfare that Sohoni has tried to draw, the distinction is crucial here. Science is already serving rural areas — Sohoni says as much in the comment here and the one that follows. But many, or maybe most, scientists may not be serving rural areas, if only so we can also acknowledge that some scientists are also serving rural areas. “Science is not serving rural areas” would mean no researcher in the country — or anywhere, really — has brought the precepts of science to bear on the problems of rural India. This is just not true. On the other hand saying “most scientists are not serving rural areas” will tell us some useful scientific knowledge exists but (i) too few scientists are working on it (i.e. mindful of the local context) and (ii) there are problems with translating it from the lab bench to its application in the field, at ground zero.

This version of this post benefited from inputs from and feedback by Prathmesh Kher.

India-based neutrino oblivion

In a conversation with science journalist Nandita Jayaraj, physicist and Nobel laureate Takaaki Kajita touched on the dismal anti-parallels between the India-based Neutrino Observatory (INO) and the Japanese Kamioka and Super-Kamiokande observatories. The INO’s story should be familiar to readers of this blog: a team of physicists led by those from IMSc Chennai and TIFR Mumbai conceived of the INO, identified places around India where it could be built, finalised a spot in Theni (in Tamil Nadu), and received Rs 1,350 crore from the Union government for it, only for the project to not progress a significant distance past this point.

Nandita’s article, published in The Hindu on July 14, touches on two reasons the project was stalled: “adverse environmental impacts” and “the fear of radioactivity”. These were certainly important reasons but they’re also symptoms of two deeper causes: distrust of the Department of Atomic Energy (DAE) and some naïvety on the scientists’ part. The article mentions the “adverse environmental impacts” only once while “the fear of radioactivity” receives a longer rebuttal — which is understandable because the former has a longer history and there’s a word limit. It bears repeating, however.

Even before work on the INO neared its beginning, people on the ground in the area were tense over the newly erected PUSHEP hydroelectric project. Environmental activists were on edge because the project was happening under the aegis of the DAE, a department notorious for its opacity and heavy-handed response to opposition. The INO collaboration compounded the distrust when hearings over a writ petition Marumalarchi Dravida Munnetra Kazhagam chief Vaiko filed in the Madras high court revealed the final ecological assessment report of the project had been prepared by the Salim Ali Centre for Ornithology and Natural History (SACON), which as the law required at the time hadn’t been accredited by the Quality Council of India and was thus unfit to draft the report. Members of the INO collaboration said this shouldn’t matter because they had submitted the report themselves together with a ‘detailed project report’ prepared by TANGEDCO and a geotechnical report by the Geological Survey of India. Perhaps the scientists thought SACON was good enough, and it may well have been, but it’s not clear how submitting the report themselves should have warranted a break from the law. Given all the other roadblocks in the project’s way, this trip-up in hindsight seems to have been a major turning point.

Locals in the area around the hill, under which the INO was to be built, were also nervous about losing access to part of their grazing land and to a temple situated nearby. There was a report in 2015 that police personnel had blocked people from celebrating a festival at this temple. In an April 2015 interview with Frontline, when told that local police were also keeping herders from accessing pastureland in the foothills, INO spokesperson Naba Mondal said: “The only land belonging to INO is the 26.825 ha. INO has no interest in and no desire to block the grazing lands outside this area. In fact, these issues were discussed in great detail in a public meeting held in July 2010, clearly telling the local people this. This is recorded in our FAQ. This was also conveyed to them in Tamil.” In response to a subsequent question about “propaganda” that the project site would store nuclear waste from Tamil Nadu’s two nuclear power facilities, Mondal said: “The DAE has already issued a press statement in this regard. I do genuinely believe that this has allayed people’s concerns.”

Even at the time these replies hinted at a naïve belief that these measures would suffice to allay fears in the area about the project. There is a difference between scientists providing assurances that the police will behave and the police actually behaving, especially if the experience of the locals diverges from what members of the INO collaboration believe is the case. Members of the collaboration had promised the locals they wouldn’t lose access to grazing land; four years later, the locals still had trouble taking their word. According to an investigation I published at The Wire in 2016, there was also to be a road that bypassed the local villages and led straight to the project site, sparing villagers the noise from the trucks ferrying construction material. It was never built.

One narrative arising from within the scientific community as the project neared the start of construction was that the INO is good for the country, that it will improve our scientific literacy, keep bright minds from leaving to work on similar projects abroad, and help Indians win prestigious prizes. For the national scientific enterprise itself, the INO would make India a site of experimental physics of global importance and Indian scientists working on it major contributors to the study of neutrino physics. I wrote an article to this effect in The Hindu in 2016 and this is also what Takaaki Kajita said in Nandita’s article. But later that year, I also asked an environmental activist (and a mentor of sorts) what he was thinking. He said the scientists will eventually get what they want but that they, the activists et al., still had to do the responsible thing and protest what they perceived to be missteps. (Most scientists in India don’t get what they want but many do, most recently like the ‘Challakere Science City’.)

Curiously, both these narratives — the activist’s pessimism and the scientists’ naïvety — could have emerged from a common belief: that the INO was preordained, that its construction was fated to be successful, causing one faction to be fastidious and the other to become complacent. Of course it’s too simplistic to be able to explain everything that went wrong, yet it’s also of a piece with the fact that the INO was doomed as much by circumstance as by historical baggage. That work on the INO was stalled by an opposition campaign that included fear-mongering pseudoscience and misinformation is disagreeable. But we also need to ask whether some actors resorted to these courses of action because others had been denied them, in the past if not in the immediate present — or potentially risk the prospects of a different science experiment in future.

Physics is often far removed from the precepts of behavioural science and social justice but public healthcare is closer. There is an important parallel between the scientists’ attempts to garner public support for the project and ASHA workers’ efforts during the COVID-19 pandemic to vaccinate people in remote rural areas. These latter people were distrustful of the public healthcare system: it had neglected them for several years but then it was suddenly on their doorstep, expecting them to take a supposedly miraculous drug that would cut their chances of dying of the viral disease. ASHA workers changed these people’s minds by visiting them again and again, going door to door, and enrolling members of the same community to convince people they were safe. Their efficacy is higher if they are from the same community themselves because they can strike up conversations with people that draw on shared experiences. Compare this with the INO collaboration’s belief that a press release from the DAE had changed people’s minds about the project.

Today the INO stares at a bleak future rendered more uncertain by a near-complete lack of political support.

This post benefited from Thomas Manuel’s feedback.

They’re trying to build a telescope

If a telescope like the TMT and a big physics experiment like the INO are being stalled for failing to account for the interests and sensibilities of the people already living at or near their planned sites, what should scientists do when they set out to plan for the next big observatory or similar installation at a new site? A new paper published by Nature on August 18, by a bunch of researchers from China, describes in great detail their efforts to qualify a new “astronomical observing site”. “On Earth’s surface,” their paper begins, “there are only a handful of high-quality astronomical sites that meet the requirements for very large next-generation facilities. In the context of scientific opportunities in time-domain astronomy, a good site on the Tibetan Plateau will bridge the longitudinal gap between the known best sites (all in the Western Hemisphere). The Tibetan Plateau is the highest plateau on Earth, with an average elevation of over 4,000 metres, and thus potentially provides very good opportunities for astronomy and particle astrophysics.” In the paper, the researchers explain their estimates of the available observing time; seeing with a differential image motion monitor; and air stability and turbulence and water vapour over the site – near a town named Lenghu in the Qinghai province (central China).

Such exhaustive detail may be common when it comes to qualifying one astronomical observing spot over another, but information about the mountain, the town, the people who live there, how they use the land, the cultural significance of their natural surroundings and – given that Qinghao is on the Tibetan plateau – if the installation of a telescope, if and when that happens, will be perceived as yet another form of colonialism by the Chinese state are all conspicuous by absence. I’m sure most readers of this blog are familiar with the TMT – short for Thirty-Meter Telescope – story: residents of Mauna Kea, where the observatory is to be built, protested and stopped its construction in 2014. Work resumed only in 2019 after a series of interventions, one outcome of which was that the international astronomy community had to reckon with its colonial history and present. Let me quote at length from an article Nithyanand Rao wrote for The Wire Science in 2020, about the “shared history” of astronomy and colonialism:

[Leandra] Swanner finds that for native Hawaiians, “science has effectively become an agent of colonisation”, “fundamentally indistinguishable from earlier colonisation activities”. This puts astronomers in a difficult position. They see the economic benefits astronomy brings to Hawai’i – over a thousand jobs, business for local firms and services and, once the TMT comes online, a promise to pay $1 million in annual lease rent — and their own work as a noble pursuit of knowledge. However, they encounter opposition that has charged them with environmental and cultural destruction.

“Unfortunately for the astronomers involved in the TMT debate,” writes Swanner, “whether they identify as indigenous allies or neocolonialists ultimately matters less than whether they are perceived as practicing neocolonialist science” (emphasis in the original).

Astronomers have attempted a counter-narrative, linking the contemporary practice of astronomy to ancient Polynesian explorers and astronomers who navigated using the stars. A concrete outcome and centrepiece of this effort was a science education centre and planetarium that “links to early Polynesian navigation history and knowledge of the night skies, and today’s renaissance of Hawaiian culture and wayfinding with parallel growth of astronomy and scientific developments on Hawaii island.”

Swanner notes the unequal relationship – the centre “merely grafts Native Hawaiian culture onto the dominant culture of Western science … Astronomers do not look to traditional knowledge to carry out their observing runs, after all, but the observatories studding the summit physically deny access to sites of sacred importance.”

The story of the India-based Neutrino Observatory is equally cynical, and equally problematic in a different way. When I commissioned Rao, and Virat Markandeya, to investigate the INO’s ‘situation’ in 2016, some four years after the Indian government had permitted its constriction, for The Wire, I assumed that it was being held back by bureaucratic inefficiency, as is so common in India, and a mulch of pseudoscience and regional politics in Tamil Nadu. But when they were pursuing the story, I learnt of a small but interesting detail: since 2010, India has required any agency that prepares an environmental impact assessment report (for a project that might damage the environment) to be accredited by the Quality Council of India. The INO collaboration’s report had been prepared by an unaccredited body, and this presented a stumbling block. Members of the collaboration – physicists – thought this was okay, just a minor detail, but to the people protesting the project, it was one thorn among many that they’d come to identify with numerous projects that governments have approved in India and which have overlooked the rights of the people living near those projects. And in the INO’s case, the principal offenders have been the Department of Atomic Energy and the Tamil Nadu Pollution Control Board, helped along of late by the Ministry of Environment, Forests and Climate Change. It struck me that people overlooking the little things was, for many of those at the receiving end of the new India’s ‘acche din’, a perfectly legitimate reason to suspect something was up. I’m bummed that the INO isn’t being built (and in fact could be cancelled, if the state’s new chief minister M.K. Stalin has his way – although I was confused when he expressed his opposition to the INO but his government had, a month or so ago, allowed the embattled Sterlite copper-smelting unit in Thoothukudi to reopen) but I wouldn’t have the project’s still being stalled any other way.

The problem is what counts as due process, and who gets to decide. As Swanner has noted, a bunch of astronomers “grafting” one idea onto another was for them the right way to go – but it’s of little use to the people in Hawai’i who are afraid of losing access to what is to them a culturally and spiritually significant location, in exchange for something originally conceived to benefit other people. (It was also quite ironic when astronomers were pissed after SpaceX’s Starlink constellation satellites began to obstruct astronomical observations of the night sky, and began to complain that the sky is a global commons, etc. It’s perhaps a greater irony that India – which contributes to 10% of the TMT collaboration – wants the telescope to be shifted away from Mauna Kea, to a different site, because of the threat of future protests – the same India that has almost amended all the country’s environmental laws to include a ‘pay and pollute’ clause.) The INO outreach team has insisted that it conducted regular and effective outreach among the people of Theni, the district in which the INO’s site is located, but they may have overlooked the wider environment of cynicism and bureaucratic dishonesty in which their efforts, and the public perception of those efforts, was couched.

Environmental activist and writer (and my former teacher) Nityanand Jayaraman told me sometime between 2016 and 2020 that at no time did the governments of India and Tamil Nadu nor the INO collaboration give themselves or the people of Theni opposed to the project the option of moving the experiment to a different location. When the latter group did demand that the project be moved away, members of the INO collaboration and other scientists that Rao and Markandeya spoke to countered that the protestors’ reasons were pseudoscientific (most of them were pseudoscientific) – but this was hardly the point. The protestors had no need to be scientific any more than they had to be guaranteed their rights and other entitlements. (It nags me that ‘solving’ the latter is a much larger problem than the proponents of one project could accommodate, but I don’t know what else I’d advocate.)

And now, astronomers in China have published a paper expressing their excitement about having spotted a new location at which to mount a telescope, themselves overlooking considerations of whether the people who are already there might be okay with it. As a result they may have effectively shut one option out. This is an important factor because, as Rao has written (see excerpt below), many people seem to think that Hawaiians’ resistance to the TMT and others of its kind on the islands is fairly recent; this is not true. They expressed their opposition how they could; the rest of us didn’t pay attention. From Rao’s article:

For a historically informed understanding of the conflict, we have to go back much further, to Hawaii’s annexation by the US in 1898, following which land was ceded to the US government.

In 1959, these lands – including Mauna Kea – were in turn ceded by the US government to the State of Hawai’i, which held them “in trust” for native Hawaiians. The next year, a tsunami laid waste to the city of Hilo in Hawai’i, prompting its chamber of commerce to write to universities in the US and Japan suggesting that Mauna Kea might be useful for astronomical observatories. This event coincided with US astronomers’ interest in Hawai’i as well.

And so the conflict between native Hawaiians and the American astronomy community began in the 1960s, when the first of the 13 observatories was constructed on the mountain that the former consider to be “a place revered as a house of worship, an ancestor, and an elder sibling in the mo’okū’auhau (or genealogical succession) of all Hawaiians.”

At the time, writes [Iokepa] Casumbal-Salazar, “there was no public consultation, no clear management process and little governmental oversight.” Environmentalists soon began opposing further construction on the mountain, arguing that the existing telescopes had contaminated local aquifers and destroyed the habitat of a rare bug found only on the mountain’s summit. …

Contrary to the narrative that native Hawaiians did not oppose the first telescopes on Mauna Kea in the 1960s and 1970s, Casumbal-Salazar shows how they did indeed express their dissent “in the few public forums available, by writing newspaper editorials, publishing opinion pieces and speaking out at public events” while also fighting other battles, such as those to reclaim their rights to land, resources, cultural practices — even the right to teach their children in the Hawaiian language.

They were also fighting evictions and resettlements in the name of tourism development and decades of the US Navy’s use of an island as target practice for its bombs. At the same time, the state’s dependence on tourism and militarism resulted in income inequalities and emigration. …

Similarly, native communities and environmentalists opposed the Kitt Peak National Observatory in Arizona, concerned about the ecology and “spiritual integrity” of the mountain. At the time the new observatory was proposed, Kitt Peak was already host to two dozen telescopes.

Today, moving the TMT or any of the other observatories away will be no small feat: they draw hundreds of thousands of dollars in grants and investments every year, not to mention setting them up took decades of work. To echo Jayaraman, not having any observatories here is no longer an option. And this is the same future the new Chinese Nature paper seems to augur: pick a spot, plan a telescope, and then ask the locals if they’re okay with it. If they’re not, tough luck. To borrow a few words from the abstract of Casumbal-Salazar’s thesis, it will become another push for a telescope “realised through law and rationalised by science”.

(I’m not sure if a lot of people got the headline – a play on the name of a song by System of a Down.)

Rupavardhini B.R. read a draft of this post before it was published.

On resource constraints and merit

In the face of complaints about how so few women have been awarded this year’s Swarnajayanti Fellowships in India, some scientists pushed back asking which of the male laureates who had been selected should have been left out instead.

This is a version of the merit argument commonly applied to demands for reservation and quota in higher education – and it’s also a form of an argument that often raises its head in seemingly resource-constrained environments.

India is often referred to as a country with ‘finite’ resources, often when people are discussing how best to put these resources to use. There are even romantic ideals associated with working in such environments, such as doing more with less – as ISRO has been for many decades – and the popular concept of jugaad.

But while fixing one variable while altering the other would make any problem more solvable, it’s almost always the resource variable that is presumed to be fixed in India. For example, a common refrain is that ISRO’s allocation is nowhere near that of NASA, so ISRO must figure how best to use its limited funds – and can’t afford luxuries like a full-fledged outreach team.

There are two problems in the context of resource availability here: 1. an outreach team proper is implied to be the product of a much higher allocation than has been made, i.e. comparable to that of NASA, and 2. incremental increases in allocation are precluded. Neither of these is right, of course: ISRO doesn’t have to wait for NASA’s volume of resources in order to set up an outreach team.

The deeper issue here is not that ISRO doesn’t have the requisite funds but that it doesn’t feel a better outreach unit is necessary. Here, it pays to acknowledge that ISRO has received not inconsiderable allocations over the years, as well as has enjoyed bipartisan support and (relative) freedom from bureaucratic interference, so it cops much of the blame as well. But in the rest of India, the situation is flipped: many institutions, and their members, have fewer resources than they have ideas and that affects research in a way of its own.

For example, in the context of grants and fellowships, there’s the obvious illusory ‘prestige constraint’ at the international level – whereby award-winners and self-proclaimed hotshots wield power by presuming prestige to be tied to a few accomplishments, such as winning a Nobel Prize, publishing papers in The Lancet and Nature or maintaining an h-index of 150. These journals and award-giving committees in turn boast of their selectiveness and elitism. (Note: don’t underestimate the influence of these journals.)

Then there’s the financial constraint for Big Science projects. Some of them may be necessary to keep, say, enthusiastic particle physicists from being carried away. But more broadly, a gross mismatch between the availability of resources and the scale of expectations may ultimately be detrimental to science itself.

These markers of prestige and power are all essentially instruments of control – and there is no reason this equation should be different in India. Funding for science in India is only resource-constrained to the extent to which the government, which is the principal funder, deems it to be.

The Indian government’s revised expenditure on ‘scientific departments’ in 2019-2020 was Rs 27,694 crore. The corresponding figure for defence was Rs 3,16,296 crore. If Rs 1,000 crore were moved from the latter to the former, the defence spend would have dropped only by 0.3% but the science spend would have increased by 3.6%. Why, if the money spent on the Statue of Unity had instead been diverted to R&D, the hike would have nearly tripled.

Effectively, the argument that ‘India’s resources are limited’ is tenable only when resources are constrained on all fronts, or specific fronts as determined by circumstances – and not when it seems to be gaslighting an entire sector. The determination of these circumstances in turn should be completely transparent; keeping them opaque will simply create more ground for arbitrary decisions.

Of course, in a pragmatic sense, it’s best to use one’s resources wisely – but this position can’t be generalised to the point where optimising for what’s available becomes morally superior to demanding more (even as we must maintain the moral justification of being allowed to ask how much money is being given to whom). That is, constantly making the system work more efficiently is a sensible aspiration, but it shouldn’t come – as it often does at the moment, perhaps most prominently in the case of CSIR – at the cost of more resources. If people are discontented because they don’t have enough, their ire should be directed at the total allocation itself more than how a part of it is being apportioned.

In a different context, a physicist had pointed out a few years ago that when the US government finally scrapped the proposed Superconducting Supercollider in the early 1990s, the freed-up funds weren’t directed back into other areas of science, as scientists thought they would be. (I couldn’t find the link to this comment nor recall the originator – but I think it was either Sabine Hossenfelder or Sean Carroll; I’ll update this post when I do.) I suspect that if the group of people that had argued thus had known this would happen, it might have argued differently.

I don’t know if a similar story has played out in India; I certainly don’t know if any Big Science projects have been commissioned and then scrapped. In fact, the opposite has happened more often: whereby projects have done more with less by repurposing an existing resource (examples herehere and here). (Having to fight so hard to realise such mega-projects in India could be motivating those who undertake one to not give up!)

In the non-Big-Science and more general sense, an efficiency problem raises its head. One variant of this is about research v. teaching: what does India need more of, or what’s a more efficient expense, to achieve scientific progress – institutions where researchers are free to conduct experiments without being saddled with teaching responsibilities or institutions where teaching is just as important as research? This question has often been in the news in India in the last few years, given the erstwhile HRD Ministry’s flip-flops on whether teachers should conduct research. I personally agree that we need to ‘let teachers teach’.

The other variant is concerned with blue-sky research: when are scientists more productive – when the government allows a “free play of free intellects” or if it railroads them on which problems to tackle? Given the fabled shortage of teachers at many teaching institutions, it’s easy to conclude that a combination of economic and policy decisions have funnelled India’s scholars into neglecting their teaching responsibilities. In turn, rejigging the fraction of teaching or teaching-cum-research versus research-only institutions in India in favour of the former, which are less resource-intensive, could free up some funds.

But this is also more about pragmatism than anything else – somewhat like untangling a bundle of wires before straightening them out instead of vice versa, or trying to do both at once. As things stand, India’s teaching institutions also need more money. Some reasons there is a shortage of teachers include the fact that they are often not paid well or on time, especially if they are employed at state-funded colleges; the institutions’ teaching facilities are subpar (or non-existent); if jobs are located in remote places and the institutions haven’t had the leeway to consider upgrading recreational facilities; etc.

Teaching at the higher-education level in India is also harder because of the poor state of government schools, especially outside tier I cities. This brings with it a separate raft of problems, including money.

Finally, a more ‘local’ example of prestige as well as financial constraints that also illustrates the importance of this PoV is the question of why the Swarnajayanti Fellowships have been awarded to so few women, and how this problem can be ‘fixed’.

If the query about which men should be excluded to accommodate women sounds like a reasonable question – you’re probably assuming that the number of fellows has to be limited to a certain number, dictated in turn by the amount of money the government has said can be awarded through these fellowships. But if the government allocated more money, we could appreciate all the current laureates as well as many others, and arguably without diluting the ‘quality’ of the competition (given just how many scholars there are).

Resource constraints obviously can’t explain or resolve everything that stands in the way of more women, trans-people, gender-non-binary and gender-non-conforming scholars receiving scholarships, fellowships, awards and prominent positions within academia. But axiomatically, it’s important to see that ‘fixing’ this problem requires action on two fronts, instead of just one – make academia less sexist and misogynistic and secure more funds. The constraints are certainly part of the problem, particularly when they are wielded as an excuse to concentrate more resources, and more power, in the hands of the already privileged, even as the constraints may not be real themselves.

In the final analysis, science doesn’t have to be a powerplay, and we don’t have to honour anyone at the expense of another. But deferring to such wisdom could let the fundamental causes of this issue off the hook.

Trump, science denial and violence

For a few days last week, before the mail-in votes had been counted in the US, the contest between Joe Biden and Donald Trump seemed set for a nail-biting finish. In this time a lot of people expressed disappointment on Twitter that nearly half of all Americans who had voted (Trump’s share of the popular vote was 48% on November 5) had done so for anti-science and science denialism.

Quite a few commentators also went on to say that “denying science is not just another political view”, implying that Trump, who has repeatedly endorsed such denialism, isn’t being a part of the political right as much as stupid and irresponsible.

This is a reasonable deduction but I think it’s also a bit more complicated. To my mind, a belief that “denying science is not just another political view” could be unfair if it keeps us from addressing the violence perpetrated by some supporters of science, and the state in the name of science.

Almost nowhere does science live in a vacuum, churning out silver bullets to society’s various ills; and in the course of its relationship with the state, it is sometimes a source of distress as well. For example, when the scientific establishment adopts non-democratic tactics to set up R&D facilities, like in Challakere, Kudankulam and Theni (INO); when unscrupulous hospitals fleece patients by exploiting their medical illiteracy; and when ineffective communication and engagement in ‘peace time’ leads to impressions during ‘wartime’ that science serves only a particular group of people, or that ‘science knows best’. These are just a few examples.

Of course, belief in pseudo-Ayurvedic treatments and astrological predictions arise due to a complicated interplay of factors, including an uncritical engagement with the status quo and the tendency to sustain caste hierarchies. We must also ask who is being empowered and why, since Ayurveda and astrology also perpetrate violences of their own.

But in this mess, it’s important to remember that science can be political as well and that choosing science can be a political act, and that by extension opposing or denying science can be a political view as well – particularly if there is also an impression that science is something that the state uses to legitimise itself (as with poorly crafted disease transmission models), often by trampling over the rights of the weak.

This is ultimately important because erasing the political context in which science denialism persists could also blind us to the violence being perpetrated by the support for science and scientism, and its political context.

When I sent a draft of the post so far to a friend for feedback, he replied that “the sympathetic view of science denialism” that I take leads to a situation where “one both can and can’t reject science denialism as a viable political position.” That’s correct.

“Well, which one is it?”

Honestly, I don’t know, but I’m not in search of an answer either. I simply think non-scientific ideas and organisations are accused of perpetrating violence more often than scientific ones are, so it’s important to interrogate the latter as well lest we continue to believe that simply and uncritically rooting for science is sufficient and good.

Playing the devil’s advocate on Starlink

After SpaceX began to launch its Starlink satellite constellation to facilitate global internet coverage, astronomers began complaining that the satellites are likely to interfere with stargazing schemes, especially those of large, sensitive telescopes. Spaceflight stakeholders also began to worry, especially after SpaceX’s announcement that the Starlink constellation is in fact the precursor to a mega-constellation of at least 12,000 satellites, that it could substantially increase space traffic and complicate satellite navigation.

Neither of these concerns is unfounded, primarily because neither SpaceX nor the branch of the American government responsible for regulating payloads – so by extension the American government itself – should get to decide how to use a resource that belongs to the whole world by itself, without proper multi-stakeholder consultation. With Starlink as its instrument, and assuming the continued absence of proper laws to control how mega-constellations are to be designed and operated, SpaceX will effectively colonise a big chunk of the orbital shells around Earth. The community of astronomers has been especially vocal and agitated over Starlink’s consequences for its work, and a part of it has directed its protests against what it sees as SpaceX’s misuse of space as a global commons, and as a body of shared cultural heritage.

The idea of space as a public commons is neither new nor unique but the ideal has seldom been met. The lopsided development of spaceflight programmes around the world, but particularly in China and the US, attests to this. In the absence of an international space governance policy that is both rigid enough to apply completely to specific situations and flexible enough to adapt to rapid advancements in private spaceflight, people and businesses around the world are at the mercy of countries that possess launch vehicles, the regulatory bodies that oversee their operations and the relationship between the two (or more) governments. So space is currently physically available and profitable only to a select group of countries.

The peaceful and equitable enjoyment of space, going by the definition that astronomers find profitable, is another matter. Both the act and outcomes of stargazing are great sources of wonder for many, if not all, people while space itself is not diminished in any way by astronomers’ activities. NASA’s ‘Astronomy Picture of the Day’ platform has featured hundreds of spectacular shots of distant cosmological features captured by the Hubble Space Telescope, and news of the soon-to-be-launched James Webb Space Telescope is only met with awe and a nervous excitement over what new gems its hexagonal eyes will discover.

Astronomy often is and has been portrayed as an innocent and exploratory exercise that uncovers the universe’s natural riches, but closer to the ground, where the efforts of its practitioners are located, it is not so innocent. Indeed, it represents one of the major arms of modern Big Science, and one of Big Science’s principal demands is access to large plots of land, often characterised by its proponents as unused land or land deemed unprofitable for other purposes.

Consider Mauna Kea, the dormant volcano in Hawaii with a peak height of 4.2 km above sea level. Its top is encrusted with 13 telescopes, but where astronomers continued to see opportunity to build more (until the TMT became as controversial as it did), Native Hawaiians saw encroachment and destruction to an area they consider sacred. Closer home, one of the principle prongs of resistance to the India-based Neutrino Observatory, a large stationary detector that a national collaboration wants to install inside a small mountain, has been that its construction will damage the surrounding land – land that the collaboration perceives to be unused but which its opponents in Tamil Nadu (where the proposed construction site is located) see, given the singular political circumstances, as an increasingly precious and inviolable resource. This sentiment in turn draws on past and ongoing resistance to the Kudankulam nuclear power plant, the proposed ISRO launchpad at Kulasekarapattinam and the Sterlite copper-smelting plant in Tamil Nadu, and the Challakere ‘science city’ in Karnataka, all along the same lines.

Another way astronomy is problematic is in terms of its enterprise. That is, who operates the telescopes that will be most affected by the Starlink mega-constellation, and with whom do the resulting benefits accrue? Arguments of the ‘fix public transport first before improving spaceflight’ flavour are certainly baseless (for principles as well as practicalities detailed here) but it would be similarly faulty for a working definition of a global commons to originate from a community of astronomers located principally in the West, for whom clear skies are more profitable than access to low-cost internet.

More specifically, to quote Prakash Kashwan, a senior research fellow at the Earth System Governance Project:

The ‘good’ in public good refers to an ‘economic good’ or a thing – as in goods and services – that has two main characteristics: non-excludability and non-rivalry. Non-excludability refers to the fact that once a public good is provided, it is difficult to exclude individuals from enjoying its benefits even if they haven’t contributed to its provisioning. Non-rivalry refers to the fact that the consumption of a public good does not negatively impact other individuals’ ability to also benefit from a public good.

In this definition, astronomy (involving the use of ground-based telescopes) has often been exclusive, whether as a human industry in its need for land and designation of public goods as ‘useless’ or ‘unused’, or as a scientific endeavour, whereby its results accrue unevenly in society especially without public outreach, science communication, transparency, etc. Starlink, on the other hand, is obviously rivalrous.

There’s no question that by gunning for a mega-constellation of satellites enveloping Earth, Musk is being a bully (irrespective of his intentions) – but it’s also true that the prospect of low-cost internet promises to render space profitable to more people than is currently the case. So if arguments against his endeavour are directed along the trajectory that Starlink satellites damage, diminish access to and reduce the usefulness of some orbital regions around Earth, instead of against the US government’s unilateral decision to allow the satellites to be launched in the first place, it should be equally legitimate to claim that these satellites also enhance the same orbital regions by extracting more value from them.

Ultimately, the ‘problem’ is also at risk of being ‘resolved’ because Musk and astronomers have shaken hands on it. The issue isn’t whether astronomers should be disprivileged to help non-astronomers or vice versa, but to consider if astronomers’ comments on the virtues of astronomy gloss over their actions on the ground and – more broadly – to remember the cons of prioritising the character of space as a source of scientific knowledge over other, more germane opportunities, and to remind everyone that the proper course of action would be to do what neither Musk and the American government nor the astronomers have done at the moment. That is, undertake public consultation, such as with stakeholders in all countries party to the Outer Space Treaty, instead of assuming that de-orbiting or anything else for that matter is automatically the most favourable course of action.

The INO story

A longer story about the India-based Neutrino Observatory that I’d been wanting to do since 2012 was finally published today (to be clear, I hit the ‘Publish’ button today) on The Wire. Apart from myself, four people worked on it: two amazing reporters, one crazy copy-editor and one illustrator. I don’t mean to diminish the role of the illustrator, especially in setting the piece’s mood quite well, but only that the reporters and the copy-editor did a stupendous job of getting the story from 0 to 1. After all, all I’d had was an idea.

The INO’s is a great story but stands unfortunately to become a depressing parable at the moment – the biggest bug yet in a spider’s web spun of bureaucracy and misinformation. As told on The Wire, the INO is India’s most badass science experiment yet but its inherent sophistication has become its strength and weakness: a strength for being able yield cutting-edge scientific, a weakness for being the ideal target of stubborn activism, unreason and, consequently and understandably, fatigue on the part of the physicists.

Here on out, it doesn’t look like the INO will get built by 2020, and it doesn’t look like it will be the same thing it started out as when it does get built. Am I disappointed by that? Of course – and bad question. I’m rooting for the experiment, yes? I’m not sure – and much better question. In the last few years, in which the project’s plans gained momentum, some unreasonable activists were able to cash in on the Department of Atomic Energy’s generally cold-blooded way of dealing with disagreement (the DAE is funding the INO). At the same time, the INO collaboration wasn’t as diligent as it ought to have been with the environmental impact assessment report (getting it compiled by a non-accredited agency). Finally, the DAE itself just stood back and watched as the scientists and activists battled it out.

Who lost? Take a guess. I hope the next Big Science experiment fares better (I’m probably not referring to LIGO because it has a far stronger global/American impetus while the INO is completely indigenously motivated).

On the need for the India-based Neutrino Observatory

A prototype of the ICAL detector at TIFR. Credit: TIFR
A prototype of the ICAL detector at TIFR. Credit: TIFR

“I bet @1amnerd disagrees with this” was how Kapil Subramanian’s piece in The Hindu today was pointed out to me on Twitter. Titled ‘India must look beyond neutrinos’, the piece examines if India should be a “global leader in science” and if investing in a neutrino detector is the way to do it. A few days ago, former Indian President Abdul Kalam and his advisor Srijan Pal Singh had penned a piece, also in The Hindu, about how India could do with the neutrino detector planned to be constructed in Theni, Tamil Nadu. While I wrote a piece along the lines of Kalam’s (again, in The Hindu) in March 2014, I must admit I have since become less convinced by an urgent need for the detector entirely due to administrative reasons. There are some parts of Subramanian’s piece that I disagree with nonetheless, and in fact I admit I have doubts about my commitment to whatever factions are involved in this debate. Here’s the break-down.

To raise the first question [Why must India gain leadership in science?] is to risk being accused of Luddite blasphemy.

This tag about “leadership in science” must be dropped from the INO debates. It is corrupting how we are seeing this problem.

How can you even question the importance of science we’ll be asked; if pressed, statistics and rankings of the poor state of Indian science will be quoted. We’ll be told that scientific research will lead to economic growth; comparisons with the West and China will be drawn. The odd spin-off story about the National Aeronautics and Space Administration (NASA) or the Indian Space Research Organisation will be quoted to demonstrate how Big Science changes lives and impacts the economy. Dr. Kalam and Mr. Singh promise applications in non-proliferation and counter terrorism, mineral and oil exploration, as well as in earthquake detection. But there has been a long history of the impact of spin-offs being exaggerated; an article in the journal of the Federation of American Scientists (a body whose board of sponsors included over 60 Nobel laureates) calculated that NASA produced only $5 million of spin-offs for $65 billion invested over eight years.

This is wrong. The document in question says $55 billion was invested between 1978 and 1986 and the return via spin-offs was $5 billion, not $5 million. Second, the document itself states that as long as it considered only the R&D spending between 1978 and 1986, the ROI was 4x ($10 billion for $2.5 billion), but when it considered the total expenditure, the ROI dropped to 0.1x ($5 billion for $55 billion). Here, government ROI should be calculated differently when compared to ROI on private investments because why would anyone consider overall expenditure that includes capital expenditure, operational expenses, legal fees and HR? Even as it is impossible to have an R&D facility without those expenses, NASA doesn’t have a product to sell either.

Update: The Hindu has since corrected the figure from $5 million to $5 billion.

If such is the low return from projects which involve high levels of engineering design, can spin-offs form a plausible rationale for what is largely a pure science project? The patchy record of Indian Big Science in delivering on core promises (let alone spin-offs) make it difficult to accept that INO will deliver any significant real-world utility despite claims. It was not for nothing that the highly regarded Science magazine termed the project “India’s costly neutrino gamble”.

That sentence there in bold – that’s probably going to keep us from doing anything at all, leaving us to stick perpetually with only the things we’re good at. In fact, we’re concerned about deliverables, let’s spend a little more and build a strongly accountable system instead of calling for less spending and more efficiency. And while it wasn’t for nothing that Science magazine called it a costly gamble, it also stated, “As India’s most expensive basic science facility ever, INO will have a profound impact on the nation’s science. Its opening in 2020 would mark a homecoming for India’s particle physicists, who over the last quarter-century dispersed overseas as they waited for India to build a premier laboratory. And the INO team is laying plans to propel the facility beyond neutrinos into other areas, such as the hunt for dark matter, in which a subterranean setting is critical.”

Even if it delivers useful technology, the argument that research spurs economic growth is highly suspect. As David Edgerton has shown, contrary to popular perception, there is actually a negative correlation between national spending on R&D and national GDP growth rates with few exceptions. This correlation does not, of course, suggest that research is a drag on the economy; merely that rich countries (which tend to grow slowly) spend more on science and technology.

Rich countries spend more – but India is spending too little. Second, the book addressed UK’s research and productive capacity – India’s capacities are different. Third, David Edgerton wrote that in a book titled Warfare State: Britain, 1920-1970, addressing research and manufacturing capacities during the Second World War and the Cold War that followed. These were periods of building and then rebuilding, and were obviously skewed against heavy investments in research (apart from in disciplines relevant to defense and security). Second, Edgerton’s contention is centered on R&D spending beyond a point and its impact on economic growth because, at the time, Britain had one of the highest state expenditures on R&D in the European region yet one of the lowest growth rates. His call was to strike a balance between research and manufacturing – theory and prototyping – instead of over-researching. As he writes of Sir Solly Zuckerman, Chairman of the Central Advisory Council for Science and Technology (in 1967), in the same book,

[He] argued, implicitly but clearly enough, that the British government, and British industry, were spending too much on R&D in absolute and relative terms. It noted that ‘a high level of R&D is far from being the main key to successful innovation’, and that ‘Capital investment in new productive capacity has not … been matching our outlays in R&D’.

In India, the problem is on both ends of this pipe: insufficient and inefficient research on the one hand due to a lack of funds among various complaints and insufficient productive capacity, as well as incentive, on the other for realizing research. Finally, if anyone expects one big science experiment to contribute tremendously to India’s economic growth, then they can also expect Chennai to have snowfall in May. What must happen is that initiatives like the INO must be (conditionally) encouraged and funded before we concern ourselves with over-researching.

Thus, national investment in science and technology is more a result of growing richer as an economy than a cause of it. Investment in research is an inefficient means of economic growth in middle income countries such as India where cheaper options for economic development are plentiful. Every country gets most of its technology from R&D done by others. The East Asian Tigers, for example, benefitted from reverse engineering Western technologies before building their own research capabilities. Technologies have always been mobile in their economic impact; this is more so today when Apple’s research in California creates more jobs in China than in the United States. Most jobs in our own booming IT sector arose from technological developments in the U.S. rather than Indian invention.

Subramanian makes a good point: that poor countries can benefit from rich countries. Apple gets almost all – if not all – of its manufacturing done in China – that’s thousands of jobs created in China and, implicitly, lost in the USA. But this argument overlooks what Apple has done to California, where the technology giant pays taxes, where it creates massive investment opportunities, where it bedecks an entire valley renowned for its creative and remunerative potential. In fact, it wouldn’t be remiss to say the digital revolution that the companies of Silicon Valley were at the forefront of were largely responsible for catapulting the United States as a global superpower after the Cold War.

It may have suited Subramanian to instead have quoted the example of France trying to recreate a Silicon Valley of its own in Grenoble, and failing, illustrating how countries need to stick to doing what they’re best at at least for the moment. (First) Then again, this presupposes India will not be good at managing a Big Science experiment – and I wouldn’t dispute the skepticism much because we’re all aware how much of a bully the DAE can be. (Second) At the same time, we must also remember that we have very few institutions that do world-class work and are at the same time free from bureaucratic interventions. The first, and only, institution that comes to mind is ISRO, and it is today poised to reach for blue sky research only after having appeased the central government for over five decades. One reason for its enviable status is that it comes under the Department of Space. These two departments – Space and Atomic Energy – are more autonomous because of the histories of their establishment, and I believe that in the near future, no large-scale scientific program can come up and hope to be well-managed that’s not under the purview of these two departments.

(Third) There is also the question of initiative. My knowledge at this point is fuzzy; nonetheless: I believe the government is not going to come up with research laboratories and R&D opportunities of its own (unless the outcomes are tied to defense purposes). I would have sided with Subramanian had it been the government’s plan to come up with a $224 million neutrino detector at the end of a typically non-consultative process. But that’s not what happened – the initiative arose at the TIFR, Mumbai, and MatScience, Chennai. Even though they’re both government-funded, the idea of the INO didn’t stem from some hypothetical need to host a large experiment in India but by physicists to complement a strong theoretical research community in the country.

Is the INO the best way forward for Indian science?

One may cite better uses (sanitation, roads, schools and hospitals) for the $224 million that is to be spent on the most expensive research facility in Indian history; but that argument is unfashionable (and some may say unfair). However, even if one concedes the importance of India pursuing global leadership in scientific research, one may question if investing in the INO is the best way to do so.

Allocation of resources

Like many other countries, India has long had a skewed approach to allocating its research budget to disciplines, institutions and individual researchers; given limited resources, this has a larger negative impact in India than in the rich countries. Of the Central government’s total research spend in 2009-10, almost a third went to the Defence Research and Development Organisation, 15 per cent to the Department of Space, 14 per cent to the Department of Atomic Energy (which is now in-charge of the INO project) and 11 per cent to the Indian Council of Agricultural Research. The Department of Science, which covers most other scientific disciplines, accounted for barely 8 per cent of the Central government’s total R&D spending. Barely 4 per cent of India’s total R&D spending took place in the higher education sector which accounts for a large share of science and technology personnel in the country. Much of this meagre spending took place in elite institutes such as the IITs and IISc., leaving little for our universities where vast numbers of S&T professors and research scholars work.

Spending on Big Science has thus been at the cost of a vibrant culture of research at our universities. Given its not so insubstantial investment in research, India punches well below its weight in research output. This raises serious questions as to whether our hierarchical model of allocating resource to research has paid off.

Subramanian’s right, but argues from the angle that government spending on science will remain the same and that what’s spent should be split among all disciplines. I’m saying that spending should increase for all fields, and developments in one field should not be held back by the slow rate of development in others, that we should ensure ambitious science experiments should go forward alongside increased funding for other research. In fact, my overall dispute with Subramanian’s opinions are centered on the concession that there are two broad models of economic development involved in this debate – whether a country should only do what it can be truly competitive in, or whether it should do all it can to be self-sufficient and protect itself. I believe Kapil Subramanian’s rooting for the former idea and I, for the latter.

It may be argued that to gain leadership in science, money is best spent in supporting a wide range of research at many institutions, rather than investing an amount equivalent to nearly 16 per cent of the 2015-16 Science Ministry budget in a very expensive facility like INO designed to benefit a relatively small number of scientists working in a highly specialised and esoteric field.

We need to invest in nurturing research at the still-struggling new IITs (and IISERs) as well as increase support to the old IITs (and IISc). More generally, we need to allocate public resources for research more fairly (though perhaps not entirely equitably) to the specialised bodies and educational institutions, including the universities. Besides raising the overall quality and quantity of our research output, this will allow students to experience being taught by leaders in their discipline who would not only inspire the young to pursue a career in research, but also encourage the small but growing trend of the best and the brightest staying back in India for their doctorate rather than migrating overseas.

Unquestionably true. We need to increase funding for the IITs, IISERs, and the wealth of other centrally funded institutions in our midst, as well as pay our researchers and technicians more. However, what Subramanian’s piece overlooks is that particle physics research, definitely one esoteric discipline of scientific research in that its contribution to our daily lives is nowhere as immediate as that of genetics or chemical engineering, in the country has managed to become somewhat more efficient, more organized and more collaborative than many other disciplines sharing its complexity. If managed well, the INO project can lead by example. The Science Ministry may have been screwing with its funding priorities since 1991 but that doesn’t mean all that’s come of it has been misguided.

Finally, like I wrote in the beginning: my support for the INO was once at its peak, then declined, and now stagnates at a plateau. If you’re interested: I’m meeting some physicists who are working on the INO on Monday (June 29), and will try to get them to open up – on the demands made in Subramanian’s piece, on the legal issues surrounding the project, and they themselves have to say about government support.

(Many thanks to Anuj Srivas for helping bounce around ideas.)

Why Indian science projects must plan for cultural conversations, too

The Wire
May 18, 2015

What should be the priority for science in India? Nature journal published answers from ten scientists in India it had asked this question to on May 13. One of the scientists was Prof. Naba Mondal, a physicist at the Tata Institute of Fundamental Research, and he said India has to “build big physics facilities”. Prof. Mondal is true in asserting also that there aren’t enough instrument builders in the country, and that when they come together, their difficulties are “compounded by widespread opposition to large-scale projects by political opportunists and activists on flimsy grounds”. However, what this perspective glazes over is the absence of a credible institution to ratify such projects and, more importantly, the fact that conversations between the government, the scientists and the people are not nearly as pluralistic as they need to be.

To illustrate, compare the $1.5-billion Thirty Meter Telescope set to come up on Mauna Kea, in Hawaii, and the Rs.1,500-crore India-based Neutrino Observatory, whose builders have earmarked a contested hill in Theni, Tamil Nadu, for a giant particle-detector to be situated. In both cases: Hundreds of protesters took to the streets against the construction of the observatory; the mountain’s surroundings that it would occupy were held sacred by the local population; and even after the project had cleared a drawn-out environmental review that ended with a go-ahead from the government, the people expressed their disapproval – first when the location was finalised and now, with construction set to begin.

“To Native Hawaiians, Mauna Kea represents the place where the earth mother and the sky father met, giving birth to the Hawaiian Islands,” says Dane Maxwell, a cultural-resource specialist in Maui, in Nature. For the people around the hill under which the INO is to be constructed, it is the abode of the deity named Ambarappa Perumal. In both cases, the protests were triggered by anger over the perceived desecration of their land land but drew on a deeper sentiment of ‘enough is enough’ against serial abuses of the environment by the government

But where the two stories deviate significantly is in the nature of dialogue. On April 23, the Office of Hawaiian Affairs organized a meeting for both parties – locals and the builders – to attempt to reach a temporary solution (A permanent alternative is distant because the locals are also insistent that something must be done about the other telescopes already up on Mauna Kea). Moreover, the American government invited an expert in the local culture – Maxwell – to advise its construction of a solar observatory, in Maui.

Obviously, it helps when those who are perceived to be desecrating the land are able to speak the language of those who revere it. This kind of conversation is lacking in India, where, despite greater cultural diversity, there is more antagonism between the government and the people than deference. In fact, with a government at the centre that is all but dismissive of environmental concerns, a bias has been forming outside the demesne of debates that one side must be ready to not get what it wants – like it always has.

During the environmental review for the project, in fact, scientists from the INO collaboration held discussions in the villages surrounding Ambarappar Hill in an effort to allay locals’ fears. As it happens, scientific facts have seldom managed make a lasting impression on public memory. In my conversations with some of the scientists – including Prof. Naba Mondal from the Tata Institute of Fundamental Research, Mumbai, and director of the INO collaboration – one question that came and comes up repeatedly according to them is if the observatory will release harmful radiation into the soil and air. The answer has always been the same (“No”) but the questions don’t go away – often helped along by misguided media reports as well.

On March 26, Vaiko, the leader of the Marumalarchi Dravida Munnetra Kazhagam party in Tamil Nadu, filed a petition with the Madras High Court to stay the INO’s construction. It was granted with the condition that if construction is to begin, the project will have to be cleared by the Tamil Nadu Pollution Control Board – the state-level counterpart of a national body that has already issued a clearance. But chief among consequences are two:

  1. Most – if not all – people have a dreadful impression of government approvals and clearances. Nuclear power plants often have no trouble acquiring land in the country while tribal populaces are frequently evicted from their properties with little to no recompense. The result is, or rather will inevitably be, that the TNPCB’s go-ahead will do nothing to restore the INO’s legitimacy in the people’s eyes.
  2. Even if they’re dodgy at best, the clearances are still only environmental clearances. A month after Vaiko’s petition mentioning cultural concerns was admitted by the High Court, there have been no institutional efforts from either the INO collaboration or the Department of Atomic Energy, which is funding the project, to address the villagers on a cultural footing. In Hawaii, on the other hand, the work of people like Dane Maxwell is expected to break the stalemate.

There is little doubt, if at all, that the TNPCB will also come ahead waving a green flag for the INO, but there seems no way for the INO collaboration to emerge out of this mess looking like the winner – which could be a real shame for scientific experiments in general in the country. When I asked environmental activist Nityanand Jayaraman if he thought there would ever be any space for a science experiment in India that would hollow out a hill, he replied, “I think the neutrino [observatory] will get built. You should not have any fears on that count. I’d rather it doesn’t. But I think it would be unfortunate if it does without so much as an honest debate where each side is prepared to live with a scenario where what they want may not be the outcome.”

Construction has started on two of the world’s grandest neutrino observatories

The groundbreaking ceremony for the Jiangmen Underground Neutrino Observatory happened on January 10. This means construction on Asia’s two biggest neutrino experiments will have started in the span of a week, after the India-based Neutrino Observatory was given the go-ahead by the government on January 5.

Where the INO uses a device called the iron calorimeter to ‘trap’ and study neutrinos, the JUNO will use a liquid scintillator neutrino detector: a large container filled with a pristine liquid and lined with sensors. LSNDs are used to count the number of a neutrinos emerging from particular sources, which in JUNO’s case will be two nuclear power plants (comprising 10 reactors with an output of 35.8 GW) situated 53 km from the observatory.

JUNO will also be China’s second big neutrino experiment. The first is the Daya Bay Reactor experiment, which – also using an LSND – studies neutrinos produced by cosmic muons. In 2012, it announced an important result concerning the mass hierarchy of the three types of neutrinos, placing the JUNO in good stead on two fronts, so to speak: with designing and operating an LSND and with using such an installation to get results. Thus, the Institute of High Energy Physics responsible for JUNO already has over 300 scientists from 45 institutions in nine countries working with it.

India, on the other hand, has little to count on on that front, which is why the INO is still soliciting collaborators despite showing no signs of any flaws in its design or effective implementation. The lack of experience also shows in a more subtle, but no less telling, way: in the press releases crafted by the respective organisations. While the TIFR/IMSc statement issued for the INO stuck to the point, the IHEP statement for JUNO expressed confidence about getting results, too.

Both INO and JUNO, once simultaneously operational in 2020, will be extending the study of the neutrino mass hierarchy problem on a grand scale. At the INO calorimeter’s heart will sit the world’s most massive electromagnet while the JUNO’s LSND will comprise the world’s most voluminous LSND tank. At the same time, the two observatories don’t signify the dawn of experimental neutrino physics in Asia; the Kolar Gold Fields neutrino experiment in India took care of that in 1964.