Solutions looking for problems

There’s been a glut of ‘science projects’ that seem to be divorced from their non-technical aspects even when the latter are equally, if not more, important – or maybe it is just a case of these problems always having been around but this author not being able to unsee it these days.

An example that readily springs to mind is the Bharati intermediary script, developed by a team at IIT Madras to ease digitisation of Indian language texts. There is just one problem: why invent a whole new script when Latin already exists and is widely understood, by humans as well as machines? Perhaps the team would have been spared its efforts if it had consulted with an anthropologist.

Another example, also from IIT Madras: it just issued a press release announcing that a team from the institute that is the sole Asian finalist in a competition to build a ‘pod’ for Elon Musk’s Hyperloop transportation concept has unveiled its design. On the flip side, Hyperloop is a high-tech, high-cost solution to a problem that trains and buses were designed to address decades ago, and they remain more efficient and more feasible. Elon Musk has admitted he conceived Hyperloop because he doesn’t like mass transit; perhaps more reliably, his simultaneous bashing of high-speed rail hasn’t gone unnoticed.

Here is a third example, this one worth many crores: the Indian Space Research Organisation (ISRO) wants to build a space station and staff it with its astronauts. The problem is nobody is sure what the need is, maybe not even ISRO, although it has been characteristically tight-lipped. There certainly doesn’t seem to be a rationale beyond “we want to see if we can do it”. If indeed Indian scientists want to conduct microgravity experiments of their own, like what are being undertaken on the International Space Station (ISS) today and will be on the Chinese Space Station (CSS) in the near future, that is okay. But where are the details and where is the justification for not simply investing in the ISS or the CSS?

It is very difficult to negotiate a fog without feeling like something is wrong. We built and launched AstroSat because Indian astronomers needed a space telescope they could access for their studies. We will be launching Aditya in 2020 because Indian astrophysicists have questions about the Sun they would like answered. But even then, let us remember that a (relatively) small space telescope is too lightweight an exercise compared to a full-fledged space station that could cost ISRO more money than it is currently allocated every year.

Sivan’s announcements are also of a piece with those of his predecessors. In fact, the organisation as such has announced many science missions without finalising the instruments they are going to carry. In early 2017, it publicised an ‘announcement of opportunity’ for a mission to Venus next decade and invited scientists to submit pitches for instruments – instead of doing it the other way around. While this is entirely understandable with a space programme that is limited in its choice of launchers, this pattern has also prompted doubts that ISRO is simply inventing reasons to fly certain missions.

Additionally, since Sivan has pitched the Indian Space Station as an “extension” of ISRO’s human spaceflight programme, we must not forget that the human spaceflight programme itself lacks vision. As Arup Dasgupta, former dy. director of the ISRO Space Applications Centre, wrote for The Wire in March this year:

… while ISRO has been making and flying science satellites, … our excursions to the Moon, then Mars and now Gaganyaan appear to break from ISRO’s 1969 vision. This is certainly not a problem because, in the last half century, there have been significant advances in space applications for development, and ISRO needs new goals. However, these goals have to be unique and should put ISRO in a lead position – the way its use of space applications for development did. Given the frugal approach that ISRO follows, Chandrayaan I and the Mars Orbiter Mission did put ISRO ahead of its peers on the technology front, but what of their contribution to science? Most space scientists are cagey, and go off the record, when asked about what we learnt that we can now share with others and claim pride of place in planetary exploration.

So is ISRO fond of these ideas only because it seems to want to show the world that it can, without any thought for what the country can accrue beyond the awe of others? And when populism rules the parliamentary roost – whether under the Bharatiya Janata Party or the Indian National Congress – ISRO isn’t likely to face pushback from the government either.

Ultimately, when you spend something like Rs 10,000-20,000 crore over two decades to make something happen, it is going to be very easy to feel like something was achieved at the end of that time, if only because it is psychologically painful to have to admit that we could get such a big punt wrong. In effect, preparing for ex post facto rationalisation before the fact itself should ring alarm bells.

Supporters of the idea will tell you today that it will help industry grow, that it will expose Indian students to grand technologies, that it will employ many thousands of people. They will need to be reminded that while these are the responsibilities of a national government, they are not why the space programme exists. And that even if the space programme provided all these opportunities, it will have failed without justifying why doing all this required going to space.

The ‘could’ve, should’ve, would’ve’ of R&D

ISRO’s Moon rover, which will move around the lunar surface come September (if all goes well), will live and and die in a span of 14 days because that’s how long the lithium-ion cells it’s equipped with can survive the -160º C-nights at the Moon’s south pole, among other reasons. This here illustrates an easily understood connection between fundamental research and its apparent uselessness on the one hand and applied science and its apparent superiority on the other.

Neither position is entirely and absolutely correct, of course, but this hierarchy of priorities is very real, at least in India, because it closely parallels the practices of the populist politics that privileges short-term gains over benefits in the longer run.

In this scenario, it may not seem worthwhile to fund a solid-state physicist who has, based on detailed physicochemical analyses, fashioned for example a new carbon-based material that can store lithium ions in its atomic lattice and has better thermal characteristics than graphite. It may seem even less worthwhile to fund researchers probing the seemingly obscure electronic properties of materials like graphene and silicene, writing papers steeped in abstract math and unable to propose a single viable application for the near-future.

But give it twenty years and a measure of success in the otherwise-unpredictable translational research part of the R&D pipeline, and suddenly, you’re holding the batteries that’re supposed to be installed on a Moon rover and need to determine how many instruments you can pack on there to ensure the whole ensemble is powered for the whole time they’ll need to conduct each of their tests. Just as suddenly, you’re also thinking about what else you could’ve installed on the little machine so it could’ve lived longer, and what else it could’ve potentially discovered in this bonus time.

Maybe you’re just happy, knowing how things have been for research in the country in the last two decades and based on the spaceflight organisation’s goals (a part of which the government has a say in), that the batteries can even last for two weeks. Maybe you’re just sad because you think it could’ve been better. But one way or another, it’s an inescapably tangible reminder that investments in research determine what you’re going to get to take out of the technology in the future. Put differently: it’s ridiculous to expect to know which water molecules are going to end up in which plant, but unless you water the soil, the plants are going to start wilting.

Chandrayaan 2 itself may be lined up to be a great success but who knows, there could come along a future mission where a groundbreaking instrument developed by an inspired student at a state university has to be left out of an interplanetary satellite because we didn’t have access to the right low-density, high-strength materials. Or where a bunch of Indians are on a decade-long interstellar voyage and the captain realises crew morale is dangerously low because the government couldn’t give two whits about social psychology.

Finding trash in the dumpster

Just as there’s no merit in writing a piece that is confused and incomplete, there’s no merit in digging through a dumpster and complaining that there’s trash. However, that doesn’t mean that it doesn’t hurt when The Quint publishes something as ass-backwards as this article, titled ‘SpaceX or ISRO, Who’s Winning the Race to Space?’, in a time when finally, at long fucking last, people are beginning to wake up to the idea that ISRO’s and SpaceX’s responsibilities are just different.

In fact, the author of this article seems (temporarily) aware of this distinction, writing, “You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals”, even as he makes the comparison anyway. This is immature, irresponsible journalism (if that), worse than the Sisyphean he-said-she-said variety if only because the ‘he’ in this case is the author himself.

But more importantly, against the backdrop of the I&B ministry’s guidelines on combating fake news that were released, and then retracted, earlier today, I briefly wondered whether this Quint piece could be considered fake news. A friend quickly disabused me of the idea by pointing out that this isn’t exactly news, doesn’t contain factual mistakes and doesn’t seem to have malicious intent. All valid points. However, I’m still not sure I agree… My reasons:

1. News is information that is new, contemporary and in the public interest. While the last two parameters can be defined somewhat objectively, novelty can and is frequently subjective. Often, it also extends to certain demographic groups within a population, such as readers of the 18-24 age group, for whom a bit of information that’s old for others is new.

2. The article doesn’t contain factual mistakes but the relationships the author defines between various facts are wrong and untrue. There are also assumptions made in the article (dissected below) that make the author sound stupid more than anything else. One does have the freedom of expression but journalists and publishers also have a responsibility to be… well, responsible.

3. You can make rational decisions only when you know everything there is to know apropos said decisions. So when you deliberately ignore certain details that would render an argument meaningless just so you can make the argument yourself, that’s malice. Especially when you then click the ‘publish’ button and watch as a clump of irrational clutch of sememes reaches 19,000 people in 18 hours.

So to me, this article is fake news.

Here’s another locus: according to Dictionary.com, fake news is

false news stories, often of a sensational nature, created to be widely shared online for the purpose of generating ad revenue via web traffic or discrediting a public figure, political movement, company, etc.

The Quint article is sensational. It claims ISRO and SpaceX can’t be compared but goes on to make the comparison anyway. Why? Traffic, visibility and revenue (through ads on The Quint‘s pages). It’s textual faff that wastes the reader’s time, forces others to spend time correcting the irrational beliefs that will take root in people’s minds as a result of reading the article, and it’s just asinine of The Quint to lend itself as a platform for such endeavours. It’s the sort of thing we frequently blame the male protagonists in Indian films for: spending 150 minutes realising his mistakes.

But again, I do apologise for whining that there’s trash in the dumpster. (Aside: A recent headline in Esquire had just the term for journalism-done-bad – ‘trash avalanche’.)

§

I must dissect the article. It’s an addiction!

India’s premier space agency Indian Space Research Organisation (ISRO) has built a reputation for launching rockets into space at very convenient prices. The consequent effect?

A lot of customers from around the world have come flocking to avail India’s economical rocket-launching services and this has helped the country make some extra bucks from its space exploration program.

Extra bucks, eh?

However, it’s a pretty competitive space.

Elon Musk’s SpaceX has had a decent run in the past couple of days and the recent successful launch of the Falcon Heavy rocket has paved the way for launching heavy satellites into space.

You don’t say…

SpaceX and ISRO are competitors of sorts in the business of commercial satellite launches. The question is, how big of a threat is SpaceX to India’s space agency?

Wrong + 🚩

Okay, first some facts.

That’s kind of you.

ISRO is an experienced campaigner in the field of space exploration as it’s been launching rockets into space since as early as 1975. From sending India’s first satellite into space (Aryabhata), to successfully launching some of the most historic missions like Chandrayaan-1 (2008) and Mangalyaan (2013), ISRO has done it all.

You should check out some of the stuff NASA, JAXA and ESA have done. ISRO really hasn’t done it all – and neither have NASA, JAXA and ESA.

ISRO has carried out a total of 96 spacecraft missions, which involve 66 launch missions.

Apart from the above, it has various other goals, ranging from maintaining the communication satellite constellation around the Earth to sending manned missions into space. Not easy by any means.

Not easy to have goals? Have you seen the todo lists of most people?

Meanwhile, SpaceX is the new kid on the block and really isn’t a big space exploration agency (at least not as big as ISRO).

That’s a comparison 🚩

SpaceX was founded in 2002 by maverick entrepreneur Elon Musk with an aim to provide economically efficient ways to launch satellites and also colonise Mars!
Overall, since SpaceX’s first mission in June, 2010, rockets from the Falcon 9 family have been launched 51 times, out of which 49 have been successful. That’s a 96 percent success rate!

So, in terms of experience, SpaceX still has some catching up to do. But in terms of success rate, it’s tough to beat at 96 percent.

Do you know that if I launch one rocket successfully, I’ll have a success rate of 100%?

SpaceX is a privately-owned enterprise and is funded by big companies like Google and Fidelity. According to a Forbes, SpaceX is valued at more than $20 billion (Rs 13.035 crore) as of December 2017.

That’s Rs 1.3 lakh crore, not Rs 13.035 crore.

ISRO on the other hand is a state-owned entity and is run and controlled by the Government of India. Each year, the agency is allocated a certain part of the nation’s budget. For the year 2018-19, the Centre has allocated Rs 8,936 crore to the space organisation.

There is also a big difference in terms of cost per mission. For example, the Falcon 9 launch vehicle’s cost per launch comes up to $62 million, while ISRO’s Polar Satellite Launch Vehicle (PSLV) costs roughly $15 million per launch.

Why are you comparing the mission costs of one rocket that can carry 10,000+ kg to the LEO to a rocket that can carry 3,800 kg to the LEO? Obviously the former is going to be costlier!

The size of the payloads are different as the Falcon 9 carries much heavier bulk than India’s rockets.

Dear author: please mention that this fact renders the comparison in your previous line meaningless. At least refrain from using terms like “big difference”.

Currently, India makes very less on commercial missions as most of them carry small or nano-satellites. Between 2013 and 2015, ISRO charged an average of $3 million per satellite. That’s peanuts compared to a SpaceX launch, which costs $60 million.

First: Antrix, not ISRO, charges $3 million per satellite. Second: By not discussing payload mass and orbital injection specifications, he’s withholding information that will make this “peanuts” juxtaposition illogical. Third: ISRO and SpaceX operate out of different economies – a point incumbent ISRO chairman K. Sivan has emphasised – leading to different costing (e.g. have you considered labour cost?). Finally, source of data?

According to a 2016 report, India’s premier space agency earned a revenue of around Rs 230 crore through commercial launch services, which is about 0.6 percent of the global launch services market.

India is still to make big ‘moolah’ from their launches as small satellites don’t pull in a lot of money as compared to bigger ones.

That last bit – does the Department of Space know you’re feeling this way? Because if they did, they might not go ahead with building the Small Satellite Launch Vehicle (SSLV). So that’s another 🚩

Despite the fact that ISRO is considered competition for Elon Musk’s SpaceX in the business of commercial satellite launches,

Although this claim is bandied about in the press, I doubt it’s true given the differences in payload capacities, costs to space and launch frequencies of the PSLV/GSLV and the Falcon 9.

he doesn’t shy away from acknowledging how he is “impressed” by India’s frugal methods of conducting successful launch missions.

Is this a big deal? Or are you awed that India’s efforts are being lauded by a white man of the west?

Last year in February, India launched 104 satellites into space using a single rocket, which really caught Musk’s attention. This is a world record that India holds till date.

If that’s not impressive enough, India also launched it’s Mars probe (Mangalyaan) in 2014 which cost less than what it cost to make the Hollywood movie “The Martian”. Ironical?

It’s not “impressive enough”. It’s not ironic.

You have to understand, both ISRO and SpaceX are different entities with different resources at their disposal and ultimately different goals. But again, if Musk is impressed, it means ISRO has hit it out of the park.

But if Musk hadn’t been impressed, then ISRO would’ve continued to be a failure in your eyes, of course.

I am not going to pick a winner because of a lot of reasons. One of them is that I like both of them.

ISRO and SpaceX must both be so relieved.

SpaceX is a 15-year-old company, which has made heavy-lift reusable launch vehicle, while ISRO is a 40-year-old organisation making inroads into the medium-lift category; Not to mention it also has a billion other things to take care of (including working on reusable rockets).

Since the objective of both these organisations is to make frugal space missions possible, it’s no doubt that ISRO has the lead in this race.

How exactly? 🤔 Also, if we shouldn’t be comparing ISRO and SpaceX, how’re they in the same race?

Yes, there is a lot that SpaceX can learn from what India has achieved till now, but that can work both ways, considering the technology SpaceX is using is much more advanced. But in the end one cannot deny the fact that SpaceX is all about launching rockets and getting them back to Earth in one piece, not making satellites.

First temple, then launchpad?

ISRO chairman K. Sivan is free to worship and worship any deity he bloody well wants ; that’s his right. But it’s not entirely comforting when you think back about all the chairpersons ISRO has had – all men, all Hindus – who have made offerings at temples to “take ISRO to new heights” or similar.

Article 25 of the Indian Constitution guarantees the people’s right to any religion but Article 51AH, which asks people to cultivate a scientific temper, calls into question why those who are leaders of a national space industry have reason to leave anything about the missions they are responsible for in the hands of an “almighty” being.

Another thing that bothers me about ISRO’s supplicants-in-chief is also something that bothers me about the day-to-day practice of theism: attributing successes to the work of a deity instead of to the hard work and convictions of regular, whether or not particularly skilled, people (and elements of the natural universe). In the same vein, every time Sivan, K. Radhakrishnan, G. Madhavan Nair or K. Kasturirangan visited a temple – and all of them have – one felt as if ‘their ISRO’ itself was subject to the benevolence of a deity.

… and what has thus far only been upper-caste Hindu deities, an indictment of the lack of diversity at ISRO, in turn an echo of the lack of diversity within the space sector. Call me a cynic but I’m sure the RSS and its ilk would have given a more outrageous fuck had the chairperson been Muslim/Christian or of a lower caste. And I’m sure sections of the media would’ve lapped this up with extortionate delight.

But what irks me most of all is that these men are leaders. Millions of people look up to them, whether for guidance or for inspiration. Many of them are children – and a part of what they’re hearing is that some things at ISRO work out only if a god deigns it.

Irrespective of their being public figures, ISRO’s chairpersons are, “subject to public order, morality and health and to the other provisions of this Part” … “equally entitled to freedom of conscience and the right freely to profess, practise and propagate religion” . But because they are also public figures, which allows me to be concerned about what they’re up to, ISRO’s leaders who pay temple visits to “pray for ISRO” also have a duty to openly clarify the following:

  1. Why they are praying “for ISRO”
  2. If smart, hard and/or ethical work is a component of ISRO’s success
  3. Whether they or their beliefs have been the source of any discomfort within the organisation…

… every time they make a temple visit and then speak to the press.

Public displays of Hinduism, signalling ISRO as an organisation benefiting from Hindu benevolence, and shifting the focus away from hard scientific labour to the blessing of gods – all of these are messages with potential for malevolence, and public figures like ISRO chiefs have been legitimising them by communicating them.

Like I said before, Sivan can follow any religion he bloody well wants, but in a politico-religious climate like ours, people – whether public figures or not – must interrogate the meaning of various forms of public participation more before engaging with them. They need to be smarter about what they say and how they act in public. It’s not rocket science.

Featured image source: YouTube.

Moon mission pushed to October, so we wait

So, the Indian Space Research Organisation’s (ISRO’s) Chandrayaan 2 mission to the Moon has been pushed to October from April. Delays of this sort are to be expected for missions of this scale, although I’ve also heard that ISRO often does a poor job of setting realistic launch dates for its missions in general.

The actual launch window for Chandrayaan 2 had been April-November, but recent reports in the media quoting ISRO officials had created the impression that people were confident April would be it.

But now, with the announcement of delay, officials’ confidence on display earlier this year that the launch would happen in April is now in serious question. The most recent media report I can find that quotes a senior official saying Chandrayaan 2 will be launched in April is dated February 16, 2018. The primary Google search result still says “April 2018”.

Screen Shot 2018-03-03 at 20.50.47

I also find it curious that the mission’s delay was announced barely 30 or so days before it was slated to launch instead of much earlier. For missions of this size, delays can be anticipated sooner… unless something unexpected has happened. Has it? No clue. Is it because of the probe itself or the launcher, a GSLV Mk II? Again, no clue.

So we do what we always have: wait.

Mission readiness is one thing but setting realistic launch dates, communicating them to the public in a timely manner and keeping all stakeholders – including the people – informed of the reasons for delay are quite another.

Featured image credit: fernandozhiminaicela/pixabay.

For space, frugality is a harmful aspiration

Ref:

‘ISRO’s Chandrayaan-2 mission to cost lesser than Hollywood movie Interstellar – here’s how they make it cost-effective’, staff, Moneycontrol, February 20, 2018. 

‘Chandrayaan-2 mission cheaper than Hollywood film Interstellar’, Surendra Singh, Times of India, February 20, 2018. 

The following statements from the Moneycontrol and Times of India articles have no meaning:

  1. The cost of ISRO’s Mars Orbiter Mission was less than the production cost of the film Gravity.
  2. The cost of ISRO’s Chandrayaan 2 mission is expected to be less than the production cost of the film Interstellar.

It’s like saying the angular momentum of a frog is lower than the speed of light. “But of course,” you’re going to say, “we’re comparing angular momentum to speed – they have different dimensions”. Well, the production cost of a film and mission costs also have different dimensions if you cared to look beyond the ‘$’ prefix. That’s because you can’t just pick up two dollar figures, decide which one’s lower and feel good about that without any social and economic context.

For example, what explains the choice of films to compare mission costs to? Is it because Gravity and Interstellar were both set in space? Is it because both films are fairly famous? Is it also because both films were released recently? Or is it because they offered convenient numbers? It’s probably the last one because there’s no reason otherwise to have picked these two films over, say, After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant – all of which were set in space AND cost less to make than Interstellar.

So I suspect it would be equally fair to say that the cost of C’yaan 2 is more than the budget of After Earth, Elysium, The Martian, Independence Day: Resurgence or Alien: Covenant. But few are going to spin it like this because of two reasons:

  1. The cost of anything has to be a rational, positive number, so saying cost(Y) is less than cost(X) would imply that cost(X) > cost(Y) ≥ 0; however, saying cost(Y) is greater than cost(X) doesn’t give us any real sense of what cost(Y) could be because it could approach ∞ or…
  2. Make cost (Y) feel like it’s gigantic, often because your reader assumes cost(Y) should be compared to cost(X) simply because you’ve done so

Now, what comparing C’yaan 2’s cost to that of making Interstellar achieves very well is a sense of the magnitude of the number involved. It’s an excellent associative mnemonic that will likely ensure you don’t forget how much C’yaan 2 cost – except you’d also have to know how much Interstellar cost. Without this bit of the statement, you have one equation and two variables, a.k.a. an unsolvable problem.

Additionally, journalists don’t use such comparisons in other beats. For example, when the Union budget was announced on February 1 this year, nobody was comparing anything to the production costs of assets that had a high cultural cachet. Rs 12.5 crore was Rs 12.5 crore; it was not framed as “India spends less on annual scholarships for students with disabilities than it cost to make Kabali“.

This suggests that such comparisons are reserved by some journalists for matters of space, which in turn raises the possibility that those journalists, and their bosses, organisations and readers, are prompted to think of costs in the space sector as something that must always be brought down. This is where this belief becomes pernicious: it assumes a life of its own. It shouldn’t. Lowering costs becomes a priority only after scientists and engineers have checked tens, possibly hundreds, of other boxes. Using only dollar figures to represent this effort mischaracterises it as simply being an exercise in cost reduction.

So, (risking repetition:) comparing a mission cost to a movie budget tells us absolutely nothing of meaning or value. Thanks to how Moneycontrol’s phrased it, all I know now is that C’yaan 2 is going to cost less than $165 million to make. Why not just say that and walk away? (While one could compare $165 million to mission costs at other space agencies, ISRO chief K. Sivan has advised against it; if one wants to compare it to other PSUs in India, I would advise against it.) The need to bring Interstellar into this, of course, is because we’ve got to show up the West.

And once we’re done showing up the West, we still have to keep. Showing up. The West. Because we’re obsessed with what white people do in first-world countries. If we didn’t have them to show up, who knows, we’d have framed ISRO news differently already because we’d have been able to see $165 million for what it is: a dimensionless number beyond the ‘$’ prefix. Without any other details about C’yaan 2 itself, it’s pretty fucking meaningless.

Please don’t celebrate frugality. It’s an unbecoming tag for any space programme. ISRO may have been successful in keeping costs down but, in the long run, the numbers will definitely go up. Frugality is a harmful aspiration vis-à-vis a sector banking on reliability and redundancy. And for fuck’s sake, never compare: the act of it creates just the wrong ideas about what space agencies are doing, what they’re supposed to be doing and how they’re doing it. For example, consider Sivan’s answer when asked by a Times of India reporter as to how ISRO kept its costs down:

Simplifying the system, miniaturising the complex big system, strict quality control and maximising output from a product, make the missions of Indian space agency cost-effective. We keep strict vigil on each and every stage of development of a spacecraft or a rocket and, therefore, we are able to avoid wastage of products, which helps us minimise the mission cost.

If I didn’t know Sivan was saying this, I’d have thought it was techno-managerial babble from Dilbert (maybe with the exception of QC). More importantly, Sivan doesn’t say here what ISRO is doing differently from other space agencies (such as, say, accessing cheaper labour), which is what would matter when you’re rearing to go “neener neener” at NASA/ESA, but sticks to talking about what everyone already does. Do you think NASA and ESA waste products? Do they not remain vigilant during each and every stage of development? Do they not have robust QC standards and enforcement regimes?

Notice here that Sivan isn’t saying “we’re doing it cheaper than others”, only that doing these things keeps the space agency “cost-effective”. Cost-effective is not the same as frugal.

Featured image: The Moon impact probe that went up on the PSLV C11 mission along with Chandrayaan 1. Credit: ISRO.

ISRO v. SpaceX doesn’t make sense

Though I’ve never met the guy, I don’t hold Pallava Bagla in very high regard because his stories – particularly of the Indian space programme – for NDTV have often reeked of simplistic concerns, pettiness and, increasingly of late, a nationalistic pride. The most recent instance all these characteristics were put on display was February 12, when NDTV published a 20-minute video of Bagla interviewing K. Sivan, ISRO’s new chairman.

The video is headlined ‘New ISRO Chief Rocket Man Sivan K, A Farmer’s Son, Takes On SpaceX’. What a great story, innit? A farmer’s son taking on SpaceX chief Elon Musk! But if you’re able to stop there and ask a few questions, you’re going to realise that the headline is a load of tosh. First off, the statement that Sivan is a “farmer’s son” is a glancing reference, if not more, to that New York Times cartoon – the implicit jingoism of which we really must get past soon. The national government has been building false narratives around supporting farmers but here we are, valorising the son of one.

Also, referring to Sivan as a “farmer’s son” IMO reduces the man to that one factoid (particularly to serve a narrative Sivan himself may not wish to pursue), as if that’s all we’re going to choose to see about his origins, neglecting what else could have enabled him to succeed the way he has.

Second: ISRO “takes on SpaceX” is a dumb statement. ISRO is a public sector organisation; SpaceX is a private corporation. Their goals are so markedly different that I’m not entirely sure why whoever crafted the headline (not necessarily Bagla) feels ISRO might be threatened by SpaceX’s Falcon Heavy launch (on February 4); I’m less sure why Bagla himself went on to spin his story thus. Case in point: SpaceX is going bigger to be able to take humans to Mars within 10 years; ISRO’s going smaller to help Antrix capitalise on the demand for launching micro and nanosats as well as bigger to launch heavier telecom satellites. Additionally, I know for a fact that ISRO has been cognisant of modularised launch vehicles for at least three years, and this isn’t something Sivan or anyone else has suddenly stopped to consider following the Falcon Heavy launch. The idea’s been around for a bit longer.

All of this is put on show in an exchange about five minutes into the video, as Bagla goes hard at the idea of ISRO possibly lagging behind SpaceX whereas Sivan says (twice) that the PSLV and the Falcon 9 can’t be compared. Transcript:

KS: We can’t compare how much the launch vehicles cost. It depends on the environment in which the manufacturing is realised. I can assure you that our costs are very low because of the way we are manufacturing, the materials we’ve chosen to work with – this way, our costs are always low. But I don’t want to compare because this is always subjective.

PB: But at the same time, we are known for our very low cost missions. For a Falcon 9, they charge about $70 million per launch (ballpark figures) while India did a mission to Mars for roughly the same price. This included the rocket and the satellite, going all the way to Mars. Does that make us feel like we’re very, very competitive in pricing, which is why so many foreign customers are also coming to India?

(ISRO’s Mars Orbiter Mission was a technology demonstrator. The endeavour’s primary mission was to provide a proof of concept of an Indian orbiter at Mars. Second, the satellite’s size and capabilities were both limited by the PSLV’s payload capacity; to wit, MOM’s scientific payload weighed a measly 15 kg whereas the NASA MAVEN, which launched in the same window as MOM, had instruments weighing 65 kg. Third, not many scientific papers have been published on the back of MOM-specific findings. When Bagla says “India did a mission to Mars for roughly the same price” as a single Falcon 9 launch, I also invite him to consider that ISRO has access to cheaper labour than is available in the West and that the MOM launch was noncommercial whereas the Falcon 9 is a rocket developed – and priced – for commerce and profit.)

KS: Foreign customers are coming to India for two reasons. One is, as you said, we’re cost effective – mainly by way of manufacturing and selection of materials. We also make simple rockets. The second reason customers prefer us is the robustness. The reliability of our PSLV is large. When a customer comes to us, they want to make sure there’s a 100% chance their satellite reaches its orbital slot.

PB: So are we cheaper than SpaceX or not?

🤦🏾

KS: Again, I don’t want to compare because it is not correct to compare. If the two rockets were made in the same timeframe, in the same place with equivalent amounts of effort, we can compare. But the rockets have been made in different parts of the world, according to different needs. What I can say is that we have a low-cost vehicle.

Almost exactly a year ago, I’d argued the same thing for The Wire, in an article that didn’t go down well with most readers (across the political spectrum). The thrust of it was that the PSLV had been designed from 1977 onwards to launch Indian remote-sensing satellites and that ISRO receives all its funding from the Department of Space. OTOH, SpaceX designed the Falcon 9 to fit prevailing market needs and, though the company receives a lot of money through NASA contracts, its raison d’être as a private entity is to make money by commercialising launch services. Excerpt:

Casting the GSLV, presumably the Mk-III, as a super-soldier in the space-war arena could be misguided. Unlike SpaceX or Arianespace, but much like Roscosmos, ISRO is a state-backed space agency. It has a mandate from the Department of Space to be India’s primary launch-services provider and fulfil the needs of both private entities as well as the government, but government first, at least since that is how policies are currently oriented. This means the GSLV Mk-III has been developed keeping in mind the satellites India currently needs, or at least needs to launch without ISRO having to depend on foreign rockets. …

On the other hand, Arianespace and SpaceX are both almost exclusively market-driven, SpaceX less so because it was set up with the ostensible goal of colonising Mars. Nonetheless, en route to building the Falcon Heavy, the company has built a workhorse of its own in the Falcon 9. And either way, together with Arianespace, it has carved out a sizeable chunk of the satellite-launching market. …

Thus, though Antrix is tasked with maximising profits, ISRO shouldn’t bank on the commercial satellites market because its mix of priorities is more diverse than those of SpaceX or Arianespace. In other words, the point isn’t to belittle ISRO’s launchers but to state that such comparisons might just be pointless because it is a case of apples and oranges.

Sadly for Bagla – and many others like him looking the fools for pushing such a silly idea – our own space programme assumes value only when compared to someone else’s agenda, irrespective of whether the comparison even makes sense. I also wonder if Sivan thinks such are the questions the consumers of NDTV’s journalism want answered – an idea not so farfetched if you consider that not many journalists get access to ISRO’s top brass in the first place – as well as what fraction of the Indian citizenry consumes the success of the Indian space programme simply relative to the successes of others and not as an enterprise established to serve India’s needs first.

We don’t have a problem with the West, we’re just obsessed with it

When you don’t write about scientific and technological research for its inherent wonderfulness but for its para-scientific value, you get stories born out of jingoism masquerading as a ‘science’ piece. Take this example from today’s The Hindu (originally reported by PTI):

A new thermal spray coating technology used for gas turbine engine in spacecraft developed by a Rajasthan-based researcher has caught the attention of a NASA scientist, an official said.

Expressing his interest in the research, James L. Smialek, a scientist from NASA wrote to Dr. Satish Tailor after it was published in the journal Ceramics International and Thermal Spray Bulletin, said S.C. Modi, the chairman of a Jodhpur-based Metallizing Equipment Company.

This story is in the news not because a scientist in Rajasthan (Tailor) developed a new and better spray-coating technique. It’s in the news because a white man* (Smialek) wrote to its inventor expressing his interest. If Smialek hadn’t contacted Tailor, would it have been reported?

The article’s headline is also a bit off: ‘NASA keen on India-made technology for spacecraft’ – but does Smialek speak for NASA the organisation? He seems to be a senior research scientist there, not a spokesperson or a senior-level decision-maker. Additionally, “India-made”? I don’t think so. “India-made” would imply that a cohesion of Indian institutions and laboratories are working to make and utilise this technology – whereas while we’re fawning over NASA’s presumed interest, the story makes no mention of ISRO. It does say CSIR and DRDO scientists are “equally” interested but to me “India-made” would also then beggar the question: “Why cut funding for CSIR?”

Next, what’s a little funny is that while the Indian government is busy deriding Western ‘cultural imports’ ruining our ‘pristine’ homegrown values, while Indian ministers are constantly given to doubting the West’s scientific methods, some journalists are using the West’s acknowledgment to recognise Indian success stories. Which makes me think if what we’re really doing is being obsessed with the West instead of working towards patching the West’s mistakes, insofar as they are mistakes, with our corrections (very broadly speaking).

The second funny thing about this story is that, AFAIK, scientists writing in one part of the world to those in other is fairly regular. That’s one of the reasons people publish in a journal – especially in one as specific as Ceramics International: so people who are interested in research on the same topic can know what their peers are up to. But by reporting on such incidents on a one-off basis, journalists run the risk of making cross-country communication look rare, even esoteric. And by imbibing the story with the quality of rareness, they can give the impression that Smialek writing to Tailor is something to be proud of.

It’s not something to be proud of for this reason simply because it’s an artificial reason. It’s a reason that doesn’t objectively exist.

Nonetheless, I will say that I’m glad PTI picked up on Tailor’s research at least because of this; akin to how embargoes are beacons pointing journalists towards legitimate science stories (although not all the time), validation can also come from an independent researcher expressing his interest in a bit of research. However, it’s not something to be okay with in the long-term – if only because… doesn’t it make you wonder how much we might not know about what researchers are doing in our country simply because Western scientists haven’t written to some of them?

*No offence to you, James. Many Indians do take take some things more seriously because white people are taking it seriously.

Featured image credit: skeeze/pixabay.

ToI successfully launches story using image from China

It may not seem like a big deal, and the sort of thing that happens often at Times of India. After ISRO “successfully” tested its scramjet engine in what seem like the early hours of August 28, Times of India published a story announcing the development. And for the story, the lead image was that of a Chinese rocket. No biggie, right? I mean, copy-editors AFAIK are given instructions to not reuse images, and in this case all the reader needed to be shown was a representative image of a rocket taking off.

The ToI story showing a picture of a Chinese rocket adjacent to the announcement that ISRO has tested its scramjet engine.
The ToI story showing a picture of a Chinese rocket adjacent to the announcement that ISRO has tested its scramjet engine.

But if you looked intently, it is a biggie. I’m guessing Times of India used that image because it had run out of ISRO images to use, or even reuse. In the four days preceding the scramjet engine test, ISRO’s Twitter timeline was empty and no press releases had been issued. All that was known was that a test was going to happen. In fact, even the details of the test turned out to be different: ISRO had originally suggested that the scramjet engine would be fired at an altitude of around 70 km; sometime after, it seems this parameter had been changed to 20 km. The test also happened at 6 am, which nobody knew was going to be the case (and which is hardly the sort of thing ISRO could decide at the last minute).

Even ahead of – and during – the previous RLV-related test conducted on May 23, ISRO was silent on all of the details. What was known emerged from two sources: K. Sivan from the Vikram Sarabhai Space Centre in Thiruvananthapuram and news agencies like PTI and IANS. The organisation itself did nothing in its official capacity to publicly qualify the test. Some people I spoke to today mentioned that this may not have been something ISRO considered worth highlighting to the media. I mean, no one is expecting this test to be sensational; it’s already been established that the four major RLV tests are all about making measurements, and the scram test isn’t even one of them. If this is really why ISRO chooses to be quiet, then it is simply misunderstanding the media’s role and responsibility.

From my PoV, there are two issues at work here. First, ISRO has no incentive to speak to the media. Second, strategic interests are involved in ISRO’s developing a reusable launch vehicle. Both together keep the organisation immune to the consequences of zero public outreach. Unlike NASA, whose media machine is one of the best on the planet but which also banks on public support to secure federal funding, ISRO does not have to campaign for its money nor does it have to be publicly accountable. Effectively, it is non-consultative in many ways and not compelled to engage in conversations. This is still okay. My problem is that ISRO is also caged as a result, the prime-mover of our space programme taken hostage by a system that lets ISRO work in the environment that it does instead of – as I get often get the impression from speaking to people who have worked with it – being much more.

In the case of the first RLV test (the one on May 23), photos emerged a couple days after the test had concluded while there was no announcement, tweet or release issued before; it even took a while to ascertain its success. In fact, after the test, Sivan had told Zee News that there may have been a flaw in one of ISRO’s calculations but the statement was not followed up. I’m also told now that today’s scram test was something ISRO was happy with and that the official announcement will happen soon. These efforts, and this communication, even if made privately, are appreciated but it’s not all that could have been done. One of the many consequences of this silence is that a copy-editor at Times of India has to work with very little to publish something worth printing. And then get ridiculed for it.

Stenograph the science down

A piece in Zee News, headlined ISRO to test next reusable launch vehicle after studying data of May 23 flight, begins thus:

The Indian Space Research Organisation has successfully launched it’s first ever ‘Made-in-India’ space shuttle RLV-Technology Demonstrator on May 23, 2016. After the launch, the Indian space agency will now test the next reusable launch vehicle test after studying May 23 flight data. A senior official in the Indian space agency says that India will test the next set of space technologies relating to the reusable launch vehicle (RLV) after studying the data collected from the May 23 flight of RLV-Technology Demonstrator. “We will have to study the data generated from the May 23 flight. Then we have to decide on the next set of technologies to be tested on the next flight. We have not finalised the time frame for the next RLV flight,” K Sivan, director, Vikram Sarabhai Space Centre (VSSC) said on Wednesday.

Apart from presenting very little new information with each passing sentence, the piece also buries an important quote, and what could well have been the piece’s real peg, more than half the way down:

As per data the RLV-TD landed softly in Bay of Bengal. As per our calculations it would have disintegrated at the speed at which it touched the sea,” Sivan said.

It sounds like Sivan is admitting to a mistake in the calculations. There should have been a follow-up question at this point – asking him to elaborate on the mismatch – because this is valuable new information. Instead, the piece marches on as if Sivan had just commented on the weather. And in hindsight, the piece’s first few paragraphs present information that is blatantly obvious: of course results from the first test are going to inform the design of the second test. What new information are we to glean from such a statement?

Or is it that we’re paying no attention to the science and instead reproducing Sivan’s words line by line because they’re made of gold?

A tangential comment: The piece’s second, third and fourth sentences say the same thing. Sandwiching one meaty sentence between layers of faff is a symptom of writing for newspapers – where there is some space to fill for the sake of there being some attention to grab. At the same time, such writing is unthinkingly carried to the web because many publishers believe that staking a claim to ‘publishing on the web’ only means making podcasts and interactive graphics. What about concision?