An identity for ISRO through a space agreement it may or may not sign

Indians, regardless of politics or ideology, have a high opinion of the Indian Space Research Organisation (ISRO). Conversations centred on it usually retain a positive arc, sometimes even verging on the exaggerated in lay circles – in part because the organisation’s stunted PR policies haven’t given the people much to go by, in part because of pride. Then again, the numbers by themselves are impressive: Since 1993, there have been 32 successful PSLV launches with over 90 instruments sent into space; ISRO has sent probes to observe the Moon and Mars up close; launched a multi-wavelength space-probe; started work on a human spaceflight program; developed two active launch vehicles with two others still in the works; and it is continuing its work on cryogenic and scramjet engines.

The case of the cryogenic engine is particularly interesting and, as it happens, relevant to a certain agreement that India and the US haven’t been able to sign for more than a decade now. These details and more were revealed when a clutch of diplomatic cables containing the transcript of conversations between officials from the Government of India, ISRO, the US Trade Representative (USTR) and other federal agencies surfaced on Wikileaks in the week of May 16. One of themdelineates some concerns the Americans had about how the Indian public regarded US attempts to stall the transfer of cryogenic engines from the erstwhile USSR to India, and the complications that were born as a result.

In 1986, ISRO initiated the development of a one-tonne cryogenic engine for use on its planned Geosynchronous Satellite Launch Vehicle (GSLV). Two years later, an American company offered to sell RL-10 cryogenic engines (used onboard the Atlas-Centaur Launch Vehicle) to ISRO but the offer was turned down because the cost was too high ($800 million) and an offer to give us the knowhow to make the engines was subject to approval by the US government, which wasn’t assured. Next, Arianespace, a French company, offered to sell two of its HM7 cryogenic engines along with the knowhow for $1,200 million. This offer was also rejected. Then, around 1989, a Soviet company named Glavkosmos offered to sell two cryogenic engines, transfer the knowhow as well as train some ISRO personnel – all for Rs.230 crore ($132 million at the time). This offer was taken up.

However, 15 months later, the US government demanded that the deal be called off because it allegedly violated some terms of the Missile Technology Control Regime, a multilateral export control regime that Washington and Moscow are both part of. As U.R. Rao, former chairman of ISRO, writes in his book India’s Rise as a Space Power, “While the US did not object to the agreement with Glavkosmos at the time of signing, the rapid progress made by ISRO in launch vehicle technology was probably the primary cause which triggered [the delayed reaction 15 months later].” Officials on the Indian side were annoyed by the threat because solid- and liquid-fuel motors were preferred for use in rockets – not the hard-to-operate cryogenic engines – and because India had already indigenously developed such rockets (a concern that would be revived later). Nonetheless, after it became clear that the deal between Glavkosmos and ISRO wouldn’t be called off, the US imposed a two-year sanction from 1992 that voided all contracts between ISRO and the US and the transfer of any goods or services between them.

Remembering the cryogenic engines affair

This episode raised its ugly head once again in 2006, when India and the US – which had just issued a landmark statement on nuclear cooperation a year earlier – agreed on the final text of the Technical Safeguards Agreement (TSA) they would sign three years later. The TSA would “facilitate the launch of US satellite components on Indian space launch vehicles”. At this time, negotiations were also on for the Commercial Space Launch Agreement (CSLA), which would allow the launch of American commercial satellites onboard Indian launch vehicles. The terms of the CSLA were derived from the Next Steps in Strategic Partnership (NSSP), a bilateral dialogue that began during the Vajpayee government and defined a series of “quid-pro-quos” between the two countries that eventually led to the 2005 civilian nuclear deal. A new and niggling issue that crept in was that the US government was attempting to include satellite services in the CSLA – a move the Indian government was opposed to because it amounted to shifting the “carefully negotiated” NSSP goalposts.

As negotiations proceeded, the cable, declassified by the then US ambassador David Mulford, reads:

“Since the inception of the NSSP, reactionary holdouts within the Indian space bureaucracy and in the media and policy community have savaged the concept of greater ties with the US, pointing to the progress that India’s indigenous programs made without assistance from the West. The legacy of bitterness mingled with pride at US sanctions continues in the present debate, with commentators frequently referring to US actions to block the sale of Russian cryogenic engines in the 1990s as proof that American interest continues to focus on hobbling and/or displacing India’s indigenous launch and satellite capabilities.”

The timing of the Glavkosmos offer, and the American intervention to block it, is important when determining how much the indigenous development of the cryogenic upper stage in the 2000s meant to India. After ISRO had turned down Arianespace’s HM7 engines offer, it had decided to develop a cryogenic engine from scratch by itself over eight years. As a result, the GSLV program would’ve been set back by at least that much. And it was this setback that Glavkosmos helped avoid (allowing the GSLV development programme to commence in 1990). Then again, with the more-US-friendly Boris Yeltsin having succeeded Mikhail Gorbachev in 1991, Glavkosmos was pressurised from the new Russian government to renegotiate its ISRO deal. In December 1993, it was agreed that Glavkosmos would provide four operational cryogenic engines and two mockups at the same cost (Rs.230 crore), with three more for $9 million, but without any more technology transfer.

The result was that ISRO had to fabricate its own cryogenic engines (with an initial investment of Rs.280 crore in 1993) with little knowledge of the challenges and solutions involved. The first successful test flight happened in January 2014 on board the GSLV-D5 mission.

So a part of what’re proud about ISRO today, and repeatedly celebrate, is rooted in an act whose memories were potential retardants for a lucrative Indo-US space deal. Moreover, they would also entrench any concessions made on the Indian side in a language that was skeptical of the Americans by default. As the US cable notes:

“While proponents point to ISRO’s pragmatism and scientific openness (a point we endorse), opponents of the [123] nuclear deal have accused ISRO of selling out India’s domestic prowess in space launch vehicles and satellite construction in order to serve the political goal of closer ties with the US. They compare ISRO’s “caving to political pressure” unfavorably with … Anil Kakodkar’s public statements drawing a red line on what India’s nuclear establishment would not accept under hypothetical civil-military nuclear separation plans.”

How do we square this ‘problematic recall’ with, as the same cable also quotes, former ISRO chairman G. Madhavan Nair saying a deal with the US would be “central to India’s international outreach”? Evidently, agreements like the TSA and CSLA signal a reversal of priorities for the US government – away from the insecurities motivated by Cold-War circumstances and toward capitalising on India’s rising prominence in the Space Age. In the same vein, further considering what else could be holding back the CSLA throws more light on what another government sees as being problematic about ISRO.

Seeing the need for the CSLA

The drafting of the CSLA was motivated by an uptick in collaborations between Indian and American entities in areas of strategic interest. The scope of these collaborations was determined by the NSSP, which laid the groundwork for the civilian nuclear deal. While the TSA would allow for American officials to inspect the integration of noncommercial American payloads with ISRO rockets ahead of launch, to prevent their misuse or misappropriation, it wouldn’t contain the checks necessary to launch commercial American payloads with ISRO rockets. Enter CSLA – and by 2006, the Americans had started to bargain for the inclusion of satellite services in it. (Note: US communications satellites are excluded from the CSLA because their use requires separate clearances from the State Department.)

However, the government of India wasn’t okay with the inclusion of satellite services in the CSLA because ISRO simply wasn’t ready for it and also because all other CSLAs that the US had signed didn’t include satellite services. The way S. Jaishankar – who was the MEA joint secretary dealing with North America at the time – put it: “As a market economy, India is entitled to an unencumbered CSLA with the US”. This, presumably, was also an allusion to the fact that Indian agencies were not being subsidised by their government in order to undercut international competitors.

A cable tracking the negotiations in 2009 noted that:

“ISRO was keen to be able to launch U.S. commercial satellites, but expected its nascent system to be afforded flexibility with respect to the market principles outlined in the CSLA. ISRO opposed language in the draft CSLA text on distorting competition, transparency, and improper business practices, but agreed to propose some alternate wording after Bliss made clear that the USG would not allow commercial satellites to be licensed in the same way as non-commercial satellites … indicating that commercial satellites licenses would either be allowed through the completion of a CSLA or after a substantial period of time has passed to allow the USG to evaluate ISRO’s pricing practices and determine that they do not create market distortions.”

ISRO officials present at the discussion table on that day asked if the wording meant the US government was alleging that ISRO was unfairly undercutting prices (when it wasn’t), and if the CSLA was being drafted as a separate agreement from the TSA because it would allow the US government to include language that explicitly prevented the Indian government from subsidising PSLV launches. USTR officials countered that such language was used across all CSLAs and that it had nothing to do with how ISRO operated. (Interestingly, 2009 was also the year when SpaceX ditched its Falcon 1 rocket in favour of the bigger Falcon 9, opening up a gap in the market for a cheaper launcher – such as the PSLV.)

Nonetheless, the underlying suspicion persists to this day. In September 2015, the PSLV C-30 mission launchedASTROSAT and six foreign satellites – including four cubesats belonging to an American company named Spire Global. In February 2016, US Ambassador Richard Verma recalled the feat in a speech he delivered at a conference in New Delhi; the next day, the Federal Aviation Administration reiterated its stance that commercial satellites shouldn’t be launched aboard ISRO rockets until India had signed the CSLA. In response to this bipolar behaviour, one US official told Space News, “On the one hand, you have the policy, which no agency wants to take responsibility for but which remains the policy. On the other, government agencies are practically falling over themselves to grant waivers.” Then, in April, private spaceflight companies in the US called for a ban on using the PSLV for launching commercial satellites because they suspected the Indian government was subsidising launches.

A fork in the path

India also did not understand the need for the CSLA in the first place because any security issues would be resolved according to the terms of the TSA (signed in 2009). It wanted to be treated the way Japan or the European Union were: by being allowed to launch American satellites without the need for an agreement to do so. In fact, at the time of signing its agreement with Japan, Japan did not allow any private spaceflight entities to operate, and first considered legislation to that end for the first time in 2015. On both these counts, the USTR had argued that its agreement with India was much less proscriptive than the agreements it had struck with Russia and Ukraine, and that its need for an agreement at all was motivated by the need to specify ‘proper’ pricing practices given India’s space launches sector was ruled by a single parastatal organisation (ISRO) as well as to ensure that knowhow transferred to ISRO wouldn’t find its way to military use.

The first news of any organisation other than ISRO being allowed to launch rockets to space from within India also only emerged earlier this year, with incumbent chairman A.S. Kiran Kumar saying he hoped PSLV operations could be privatised – through an industrial consortium in which its commercial arm, Antrix Corporation, would have a part – by 2020 so the rockets could be used on at least 18 missions every year. The move could ease the way to a CSLA. However, no word has emerged on whether the prices of launches will be set to market rates in the US or if ISRO is considering an absolute firewall between its civilian and military programmes. Recently, a group of universities developed the IRNSS (later NAVIC), India’s own satellite navigation system, alongside ISRO, ostensibly for reducing the Indian armed forces’ dependence on the American GPS system; before that was the GSAT-6 mission in August 2015.

If it somehow becomes the case that ISRO doesn’t ever accede to the CSLA, then USTR doubts over its pricing practices will intensify and any commercial use of the Indian agency’s low-cost launchers by American firms could become stymied by the need for evermore clearances. At the same time, signing up to the CSLA will mean the imposition of some limits on what PSLV launches (with small, commercial American payloads) can be priced at. This may rob ISRO of its ability to use flexible pricing as a way of creating space for what is after all a “nascent” entity in global terms, besides becoming another instance of the US bullying a smaller player into working on its terms. However, either course means that ISRO will have to take a call about whether it still thinks of itself as vulnerable to getting “priced out” of the world market for commercial satellite launches or is now mature enough to play hardball with the US.

Special thanks to Prateep Basu.

The Wire
May 23, 2016

Crowdsourcing earthquakes is not a big deal – keeping it reliable is

"Symbols show the few regions of the world where public citizens and organizations currently receive earthquake warnings and the types of data used to generate those warnings (7). Background color is peak ground acceleration with 10% probability of exceedance in 50 years from the Global Seismic Hazard Assessment Program." DOI: 10.1126/sciadv.1500036
“Symbols show the few regions of the world where public citizens and organizations currently receive earthquake warnings and the types of data used to generate those warnings (7). Background color is peak ground acceleration with 10% probability of exceedance in 50 years from the Global Seismic Hazard Assessment Program.” DOI: 10.1126/sciadv.1500036

This map stakes well the need for a decentralized earthquake warning system. The dark and light blue rings show where early earthquake warnings are available, while the reddish and yellow patches describe areas prone to earthquakes. There’s a readily visible disparity, which a team of scientists from the University of California, Berkeley, leverages to outline how early earthquake warnings can be crowdsourced. In a paper in Scientific Advances on April 10, the team proposes using the accelerometer in our smartphones to log and transmit tiny movements in the ground beneath us to a server that analyzes them for signs of a quake and returns the results (insert cute quote about crowdsourced information being used by the crowd).

This idea isn’t entirely new. In 2013, two seismologists from the Instituto Nazionale di Geosifica e Vulcanologia in Italy used cheap MEMS (micro-electromechanical system) accelerometers to determine that they’re good for anticipating quakes that are rated higher than five on the Richter scale if located close to the epicenter. Otherwise, the accelerometers weren’t reliable when logging seismic signals that weren’t sharp or unique enough – such as is the case with weaker earthquakes or the strong ground-motion associated with moving faults – because the instruments produced sufficient noise to drown their own readings out.

In fact, this issue might’ve been evident in 2010 itself. Then, a team out of Stanford University proposed using “all the computers” on the Internet to “catch” quakes. To be part of this so-called Quake Catcher Network, users would have to install a piece of QCN software along with a ‘low-maintenance’ motion sensor on their desktops/laptops to empower them with the same capabilities as a smartphone-borne accelerometer, but more sensitive. The software would log motion data due to mild tremors or stronger and strong ground-motion and relay it over the web in near-real-time. The QCN has been live for over a year now, although most of its users are situated in Europe and North America.

Perhaps the earliest instance of crowdsourcing in the Age of the Smartphone was with Twitter. In 2008, a 7.9-magnitude earthquake in China killed over 10,000 in a rain-hit region of the country. The CNN wrote, “Rainy weather and poor logistics thwarted efforts by relief troops who walked for hours over rock, debris and mud on Tuesday in hopes of reaching the worst-hit area”. Twitter, however, was swarming with updates from the region, often revealing gaps in the global media’s coverage of the disaster. The Online Journalism Blog summed it up:

Robert Scoble was following proceedings on his much-followed Twitter, and feeding back information from his followers, including, for instance (after he tweeted the fact that Tweetscan was struggling) that people were saying Summize was the best tool to use.

If you followed the conversation through Scoble using Quotably, you could then find Gregg Scott, who in turn was talking to RedChina, Karoli, mmsullivan, and inwalkedbud who was in Chengdu, China (also there was Casperodj and Lyrrael).

If you wanted to check out inwalkedbud you could do so using Tweetstats and find he has been twittering since December. Sadly the Internet Archive doesn’t bring any results, though.

The mainstream media had differing reports: RTE (Ireland) said “No major damage after China earthquake” – but UK’s Sky News reported four children killed and over 100 injured; Chinaview (China) said no buildings had collapsed – but an Australian newspaper said they had.

Filtering the noise

In all these cases – the Italian MEMS experiment, the QCN desktop/laptop-based tracker and with updates on Twitter – the problem has not been to leverage the crowd effectively. In 2015, we’re already there. The real problem has been reliability. Quakes stronger than five on the Richter scale signal danger everywhere, and there are enough smartphone-bearing users around the world to be on alert for them. But quakes less strong are bad news particularly in developing economies, where bad infrastructure and crowding are often to blame for collapsing buildings that claim hundreds of lives.

Let’s take another look at the disparity map:

"Symbols show the few regions of the world where public citizens and organizations currently receive earthquake warnings and the types of data used to generate those warnings (7). Background color is peak ground acceleration with 10% probability of exceedance in 50 years from the Global Seismic Hazard Assessment Program." DOI: 10.1126/sciadv.1500036
“Symbols show the few regions of the world where public citizens and organizations currently receive earthquake warnings and the types of data used to generate those warnings (7). Background color is peak ground acceleration with 10% probability of exceedance in 50 years from the Global Seismic Hazard Assessment Program.” DOI: 10.1126/sciadv.1500036

The redder belts are more prevalent in South America, Central and East Asia and in a patch running between Central Europe and the Middle East. Not being able to detect weaker quakes if not for centralized detection agencies in these regions keeps hundreds of millions of people under threat. So, the real achievement when scientists confidently crowdsource early earthquake warnings is the use of specialized filtering techniques and algorithms to increase the sensitivity of smartphones to subtle movements in the ground and so the reliability of their measurements. Where concepts like phase smoothing, Kalman filters and GNSS receivers thrumming in a smartphone’s chassis spell the difference between news and help.

Tech 1, Coarseness 0.

These are only some of the techniques in use – and whose use the Berkeley group thinks particularly significant in their early warning system’s designs. Phase smoothing is a technique where errors associated with data transmission between smartphones and satellites – such as measurement noise or reflection by metallic objects in the transmission’s path – are mitigated by keeping track of the rate of change of the distance between the phone and the satellite. A Kalman filter is an algorithm that specializes in picking out data patterns from a chaos of signals and using that pattern to fish for even more signals like it, thus steadily filtering out the noise. Together, they help scientists adjust for drift – which is when an object moves by a greater distance than an earthquake would have it move.

Finally, the scientists further refine the data by comparing it to legacy GNSS (Global Navigation Satellite System) data, which is the most accurate but also the most costly system with which to anticipate and track earthquakes. In their Science Advances Paper, the Berkeley group writes that the data obtained through thousands of smartphones “can be substantially improved by using differential corrections via satellite-based augmentation systems, tracking the more precise GNSS carrier phase and using it to filter the [crowdsourced] data (“phase smoothing”), or by combination with independent INS data in a Kalman filter.”

A warning system all India’s

But the best part: “Today’s smartphones have some or all of these capabilities”, negating the otherwise typical coarseness and unreliability associated with crowdsourced data. Here’s more evidence of this:

(B) Drift of position obtained from various devices (GNSS, double-integrated accelerometers, and Kalman filtering thereof) compared to observed earthquake displacements. DOI: 10.1126/sciadv.1500036
(B) Drift of position obtained from various devices (GNSS, double-integrated accelerometers, and Kalman filtering thereof) compared to observed earthquake displacements. DOI: 10.1126/sciadv.1500036

Chart (B), which is the one of interest to us, shows the amount of drift present in data acquired by various methods over time. The black lines show the observed displacements due to earthquakes of different magnitudes. So, a colored line represents reliable data as long as it is below the corresponding black line. For example, the red line for “C/A code + p-s + SBAS” shows a largely reliable reading of an M6 earthquake until about 50 seconds, after which it starts to drift. Similarly, most colored lines are below the black lines for M8-9 earthquakes, so all those methods can be used to reliably track the stronger earthquakes. The line described by the Berkeley group is the red line – the crowdsourced line.

The ideal thing would be to develop more sophisticated filtering mechanisms that’d bring the red line close to the blue GNSS line at the bottom, which of course exhibits zero drift. Fortunately, self-reliance on this front might be possible soon in the Indian Subcontinent region. Since 2013, the Indian Space Research Organization has launched four of its planned seven Regional Navigation Satellite System (IRNSS) that could augment regional efforts to crowdsource earthquake-warnings. The autonomous system is expected to live in 2016.