Ayurveda is not a science – but what does that mean?

This post has benefited immensely with inputs from Om Prasad.

Calling something ‘not a science’ has become a pejorative, an insult. You say Ayurveda is not a science and suddenly, its loudest supporters demand to know what the problem is, what your problem is, and that you can go fuck yourself.

But Ayurveda is not a science.

First, science itself didn’t exist when Ayurveda was first born (whenever that was but I’m assuming it was at least a millennium ago), and they were both outcomes of different perceived needs. So claiming ‘Ayurveda is a science’ makes little sense. You could counter that 5 didn’t stop being a number just because the number line came much later – but that wouldn’t make sense either because the relationship between 5 and the number line is nothing like the relationship between science and Ayurveda.

It’s more like claiming Carl Linnaeus’s choice of topics to study was normal: it wouldn’t at all be normal today but in his time and his particular circumstances, they were considered acceptable. Similarly, Ayurveda was the product of a different time, technologies and social needs. Transplanting it without ‘updating’ it in any way is obviously going to make it seem inchoate, stunted. At the same time, ‘updating’ it may not be so productive either.

Claiming ‘Ayurveda is a science’ is to assert two things: that science is a qualifier of systems, and that Ayurveda once qualified by science’s methods becomes a science. But neither is true for the same reason: if you want one of them to be like the other, it becomes the other. They are two distinct ways of organising knowledge and making predictions about natural processes, and which grew to assume their most mature forms along different historical trajectories. Part of science’s vaunted stature in society today is that it is an important qualifier of knowledge, but it isn’t of knowledge systems. This is ultimately why Ayurveda and science are simply incompatible.

One of them has become less effective and less popular over time – which should be expected because human technologies and geopolitical and social boundaries have changed dramatically – while the other is relatively more adolescent, more multidisciplinary (with the right opportunities) and more resource-intensive – which should be expected because science, engineering, capitalism and industrialism rapidly co-evolved in the last 150 years.

Second, ‘Ayurveda is a science’ is a curious statement because those who utter it typically wish to elevate it to the status science enjoys and at the same time wish to supplant answers that modern science has provided to some questions with answers by Ayurveda. Of course, I’m speaking about the average bhakt here – more specifically a Bharatiya Janata Party supporter seemingly sick of non-Indian, especially Western, influences on Indian industry, politics, culture (loosely defined) and the Indian identity itself, and who may be actively seeking homegrown substitutes. However, their desire to validate Ayurveda according to the practices of modern science is really an admission that modern science is superior to Ayurveda despite all their objections to it.

The bhakt‘s indignation when confronted with the line that ‘Ayurveda is not a science’ is possibly rooted in the impression that ‘science’ is a status signal – a label attached to a collection of precepts capable of together solving particular problems, irrespective of more fundamental philosophical requirements. However, the only science we know of is the modern one, and to the bhakt the ‘Western’ one – both in provenance and its ongoing administration – and the label and the thing to which it applies, i.e. the thing as well as the name of the thing, are convergent.

There is no other way of doing science; there is no science with a different set of methods that claims to arrive at the same or ‘better’ scientific truths. (I’m curious at this point if, assuming a Kuhnian view, science itself is unfalsifiable as it attributes inconsistencies in its constituent claims to extra-scientific causes than to flaws in its methods themselves – so as a result science as a system can reach wrong conclusions from time to time but still be valid at all times.)

It wouldn’t be remiss to say modern science, thus science itself, is to the nationalistic bhakt as Ayurveda is to the nationalistic far-right American: a foreign way of doing things that must be resisted, and substituted with the ‘native’ way, however that nativity is defined. It’s just that science, specifically allopathy, is more in favour today because, aside from its own efficacy (a necessary but not sufficient condition), all the things it needs to work – drug discovery processes, manufacturing, logistics and distribution, well-trained health workers, medical research, a profitable publishing industry, etc. – are modelled on institutions and political economies exported by the West and embedded around the world through colonial and imperial conquests.

Third: I suspect a part of why saying ‘Ayurveda is not a science’ is hurtful is that Indian society at large has come to privilege science over other disciplines, especially the social sciences. I know too many people who associate the work of many of India’s scientists with objectivity, a moral or political nowhereness*, intellectual prominence, pride and, perhaps most importantly, a willingness to play along with the state’s plans for economic growth. To be denied the ‘science’ tag is to be denied these attributes, desirable for their implicit value as much as for the opportunities they are seen to present in the state’s nationalist (and even authoritarian) project.

On the other hand, social scientists are regularly cast in opposition to these attributes – and more broadly by the BJP in opposition to normative – i.e. pro-Hindu, pro-rich – views of economic and cultural development, and dismissed as such. This ‘science v. fairness’ dichotomy is only a proxy battle in the contest between respecting and denying human rights – which in turn is also represented in the differences between allopathy and Ayurveda, especially when they are addressed as scientific as well as social systems.

Compared to allopathy and allopathy’s intended outcomes, Ayurveda is considerably flawed and very minimally desirable as an alternative. But on the flip side, uptake of alternative traditions is motivated not just by their desirability but also by the undesirable characteristics of allopathy itself. Modern allopathic methods are isolating (requiring care at a designated facility and time away from other tasks, irrespective of the extent to which that is epidemiologically warranted), care is disempowering and fraught with difficult contradictions (“We expect family members to make decisions about their loved ones after a ten-minute briefing that we’re agonising over even with years of medical experience”**), quality of care is cost-stratified, and treatments are condition-specific and so require repeated hospital visits in the course of a lifetime.

Many of those who seek alternatives in the first place do so for these reasons – and these reasons are not problems with the underlying science itself. They’re problems with how medical care is delivered, how medical knowledge is shared, how medical research is funded, how medical workers are trained – all subjects that social scientists deal with, not scientists. As such, any alternative to allopathy will become automatically preferred if it can solve these economic, political, social, welfare, etc. problems while delivering the same standard of care.

Such a system won’t be an entirely scientific enterprise, considering it would combine the suggestions of the sciences as well as the social sciences into a unified whole such that it treated individual ailments without incurring societal ones. Now, say you’ve developed such an alternative system, called PXQY. The care model at its heart isn’t allopathy but something else – and its efficacy is highest when it is practised and administered as part of the PXQY setup, instead of through standalone procedures. Would you still call this paradigm of medical care a science?

* Akin to the ‘view from nowhere’.
** House, S. 2, E 18.

Featured image credit: hue 12 photography/Unsplash.

The calculus of creative discipline

Every moment of a science fiction story must represent the triumph of writing over world-building. World-building is dull. World-building literalises the urge to invent. World-building gives an unnecessary permission for acts of writing (indeed, for acts of reading). World-building numbs the reader’s ability to fulfil their part of the bargain, because it believes that it has to do everything around here if anything is going to get done. Above all, world-building is not technically necessary. It is the great clomping foot of nerdism.

Once I’m awake and have had my mug of tea, and once I’m done checking Twitter, I can quote these words of M. John Harrison from memory: not because they’re true – I don’t believe they are – but because they rankle. I haven’t read any writing of Harrison’s, I can’t remember the names of any of his books. Sometimes I don’t remember his name even, only that there was this man who uttered these words. Perhaps it is to Harrison’s credit that he’s clearly touched a nerve but I’m reluctant to concede anymore than this.

His (partial) quote reflects a narrow view of a wider world, and it bothers me because I remain unable to extend the conviction that he’s seeing only a part of the picture to the conclusion that he lacks imagination; as a writer of not inconsiderable repute, at least according to Wikipedia, I doubt he has any trouble imagining things.

I’ve written about the virtues of world-building before (notably here), and I intend to make another attempt in this post; I should mention what both attempts, both defences, have in common is that they’re not prescriptive. They’re not recommendations to others, they’re non-generalisable. They’re my personal reasons to champion the act, even art, of world-building; my specific loci of resistance to Harrison’s contention. But at the same time, I don’t view them – and neither should you – as inviolable or as immune to criticism, although I suspect this display of a willingness to reason may not go far in terms of eliminating subjective positions from this exercise, so make of it what you will.

There’s an idea in mathematical analysis called smoothness. Let’s say you’ve got a curve drawn on a graph, between the x- and y-axes, shaped like the letter ‘S’. Let’s say you’ve got another curve drawn on a second graph, shaped like the letter ‘Z’. According to one definition, the S-curve is smoother than the Z-curve because it has fewer sharp edges. A diligent high-schooler might take recourse through differential calculus to explain the idea. Say the Z-curve on the graph is the result of a function Z(x) = y. If you differentiate Z(x) where ‘x’ is the point on the x-axis where the Z-curve makes a sharp turn, the derivative Z'(x) has a value of zero. Such points are called critical points. The S-curve doesn’t have any critical points (except at the ends, but let’s ignore them); L-, and T-curves have one critical point each; P- and D-curves have two critical points each; and an E-curve has three critical points.

With the help of a loose analogy, you could say a well-written story is smooth à la an S-curve (excluding the terminal points): it it has an unambiguous beginning and an ending, and it flows smoothly in between the two. While I admire Steven Erikson’s Malazan Book of the Fallen series for many reasons, its first instalment is like a T-curve, where three broad plot-lines abruptly end at a point in the climax that the reader has been given no reason to expect. The curves of the first three books of J.K. Rowling’s Harry Potter series resemble the tangent function (from trigonometry: tan(x) = sin(x)/cosine(x)): they’re individually somewhat self-consistent but the reader is resigned to the hope that their beginnings and endings must be connected at infinity.

You could even say Donald Trump’s presidency hasn’t been smooth at all because there have been so many critical points.

Where world-building “literalises the urge to invent” to Harrison, it spatialises the narrative to me, and automatically spotlights the importance of the narrative smoothness it harbours. World-building can be just as susceptible to non-sequiturs and deus ex machinae as writing itself, all the way to the hubris Harrison noticed, of assuming it gives the reader anything to do, even enjoy themselves. Where he sees the “clomping foot of nerdism”, I see critical points in a curve some clumsy world-builder invented as they went along. World-building can be “dull” – or it can choose to reveal the hand-prints of a cave-dwelling people preserved for thousands of years, and the now-dry channels of once-heaving rivers that nurtured an ancient civilisation.

My principal objection to Harrison’s view is directed at the false dichotomy of writing and world-building, and which he seems to want to impose instead of the more fundamental and more consequential need for creative discipline. Let me borrow here from philosophy of science 101, specifically of the particular importance of contending with contradictory experimental results. You’ve probably heard of the replication crisis: when researchers tried to reproduce the results of older psychology studies, their efforts came a cropper. Many – if not most – studies didn’t replicate, and scientists are currently grappling with the consequences of overturning decades’ worth of research and research practices.

This is on the face of it an important reality check but to a philosopher with a deeper view of the history of science, the replication crisis also recalls the different ways in which the practitioners of science have responded to evidence their theories aren’t prepared to accommodate. The stories of Niels Bohr v. classical mechanicsDan Shechtman v. Linus Pauling and the EPR paradox come first to mind. Heck, the philosophers Karl Popper, Thomas Kuhn, Imre Lakatos and Paul Feyerabend are known for their criticisms of each other’s ideas on different ways to rationalise the transition from one moment containing multiple answers to the moment where one emerges as the favourite.

In much the same way, the disciplined writer should challenge themself instead of presuming the liberty to totter over the landscape of possibilities, zig-zagging between one critical point and the next until they topple over the edge. And if they can’t, they should – like the practitioners of good science – ask for help from others, pressing the conflict between competing results into the service of scouring the rust away to expose the metal.

For example, since June this year, I’ve been participating on my friend Thomas Manuel’s initiative in his effort to compose an underwater ‘monsters’ manual’. It’s effectively a collaborative world-building exercise where we take turns to populate different parts of a large planet with sizeable oceans, seas, lakes and numerous rivers with creatures, habitats and ecosystems. We broadly follow the same laws of physics and harbour substantially overlapping views of magic, but we enjoy the things we invent because they’re forced through the grinding wheels of each other’s doubts and curiosities, and the implicit expectation of one creator to make adequate room for the creations of the other.

I see it as the intersection of two functions: at first, their curves will criss-cross at a point, and the writers must then fashion a blending curve so a particle moving along one can switch to the other without any abruptness, without any of the tired melodrama often used to mask criticality. So the Kularu people are reminded by their oral traditions to fight for their rivers, so the archaeologists see through the invading Gezmin’s benevolence and into the heart of their imperialist ambitions.

That astrology workshop at the IISc

Couple caveats:

  1. I wrote this post on the night of October 28, before the workshop was cancelled on the morning of October 29. I haven’t bothered to change the tense because issuing this caveat at the top seemed simpler.
  2. A highly edited version of this post was published on The Wire on the morning of October 29. It’s about half as long as the post below, so if you’re looking for a TL;DR version, check that out.

A friend of mine forwarded this to me on October 28:

The poster for IIScAA's astrology workshop

I’m sure you can see the story writing itself: “IISc, a bastion of rational thinking and among the last of its kind in India, has capitulated and is set to host a workshop on astrology – a subject Karl Popper considered the prime example of how pseudoscience should be defined – on November 25. The workshop is being organised by the IISc Alumni Association, and will be conducted by M.S. Rameshaiah, who holds a BE in mechanical engineering from IISc and a PG diploma in patents law from NALSAR. He retired as a scientist from the National Aerospace Laboratories.”

But this is an old point. As R. Prasad, the science editor of The Hindu, wrote on his blog, an astrology workshop popping up somewhere in the country was only a matter of time, not possibility. What’s more interesting is why there’s a hullabaloo and who’s raising it. As the friend who forwarded the poster said, “Hope you guys carry this or put some pressure.”

Prasad’s conversation with Rameshaiah moves along the line of why this workshop has been organised – and this is the line many of us (including myself) would assume at first. IISc is one of India’s oldest modern research institutions. It wields considerable clout as a research and academic body among students, researchers and policymakers alike, and it has thus far remained relatively free of political interference. Its own faculty members do good science and are communicative with the media.

So all together, people who regularly preach the scientific temper and who grapple with scientific knowledge as if it existed in a vacuum like to do so on the back of socially important institutions like the IISc. It’s an easy way out to establish dignity – like how part-time writers often use quotable quotes as if they carry some authority.

The problem is, they don’t. And in the same way, it’s not entirely fair to use the IISc as a champion of the idea of success-through-rationalism because it’s an academic and research institution engaged in teaching its students about the sciences, and it doesn’t teach them by exclusion. It doesn’t teach them by describing what is not science but by inculcating what is.

This, as far as I’m concerned, is the primary issue with Rameshaiah’s workshop: calling astrology a “scientific tool” from within an institution that teaches students, and the people at large, about what science is. If it had been called just a “tool”, there wouldn’t have been (much of) a problem. By attaching the prefix of “science”, Rameshaiah is misusing the name of the IISc to bring credibility to his personal beliefs. The secondary issue is whether IISc stands to lose any credibility by association: of course it does.

So there are two distinct issues to be addressed here:

  1. Of an astrology workshop being hosted by the IISc AA, and
  2. Of an astrology workshop in general

The second issue is arguably more interesting because the first issue seems concerned only with chasing an astrology workshop outside the premises of a research institution. And once it is chased out, can we be sure that the same people will be concerned, especially meaningfully, about quelling all astrology workshops everywhere? I’m not so sure.

Of an astrology workshop in general

While the readers of this blog will agree, as I do, that astrology is not a science, can we agree that it is a “tool”? Again, while the readers of this blog will claim that it is a pseudoscience that, in Popper’s (rephrased) words, “destroyed the testability of their theory in order to escape falsification”, it also bears asking why faith in astrology persists in the first place.

Is it because people have not been informed it’s a pseudoscience or is it because there is no record of their religious beliefs – in which one’s faith in astrology is also embedded – having let them down in the last many generations? To put it in Popper’s terms, astrology may not be falsifiable but how many people are concerned with its falsifiability to begin with?

Many people of the community to which I belong believe in astrology. They are Brahmins, quite well to do, ranging in affluence from the upper middle class to the upper class. Many of them have held positions of power and influence, and many of the same people believe that the alignment of the stars in the sky influences their fortunes. Falsifiability is, to them, an intellectual exercise that doesn’t add to their lives. Astrological beliefs and the actions thus inspired, on the other hand, get them through their days and leave them feeling better about themselves.

Where I see Rameshaiah’s workshop inflicting real damage is not among such people, who can afford to lose some of their money and not have to give a damn. Where the problem comes to be is with subaltern communities – from whom astrology has the potential to siphon limited resources and misappropriate their means to ‘status’ mobility (e.g., according to Prasad, Rameshaiah is charging Rs 2,000 per person for the two-day workshop). Additionally, how such beliefs infiltrate these communities is also worth inspecting. For example, astrology is the stranglehold of Brahmins – and to liberate Dalits from the idea that astrology is a valid method of anything is, in a sense, a fight against casteism.

In the Indian socio-economic system, it’s easier to sink to the bottom than to rise to the top. In such a system, rationalism, some principles from the Bhagavad Gita and hope alone won’t cut it if you’re trying to swim upstream simply because of the number of institutional barriers in your way (especially if you’re also of a lower caste). Consider the list of things to which your access is highly limited: education, credit, housing, sanitation, employment, good health, etc. In this scenario, is it any surprise that no one is concerned about falsification as long as it promises a short way out to the upper strata of society?

Ultimately, and in the same vein, what will be more effective in eliminating belief in astrology is not eliminating astrology itself as much as eliminating one’s vulnerability to it. To constantly talk about eradicating beliefs in pseudoscientific ideas from society is to constantly ignore why these ideas take root, to constantly ignore why scientific ideas don’t inspire confidence – or to constantly assume that they do. On the last count, I’m sure many reasons will spring to mind, among them our education, bureaucracy, politics, culture, etc; pseudoscience only exists in their complex overlap.

This is all the more reason to stop fixating on Rameshaiah’s conducting the workshop and divert our attention to who has decided to attend and why. This is not an IISc course; it’s a workshop organised by the institution’s alumni association and as such is not targeted at scientists (in case the question arose as to why would a layperson approach a scientist for astrological advice). In fact, we’re only questioning the presence of an astrology workshop in the midst of a scientific research institution. We’re not questioning why astrology workshops happen in the first place; we must.

Because if you push Rameshaiah down, then someone else like him is going to pop up in a difference place. This is a time when so many of us seem smart enough to ask questions like “What will air filters do when you’re not addressing the source of pollution” or “Why are you blaming women for putting up lists willy-nilly accusing men of sexual harassment when you realise that due process is a myth in many parts of India and reserved for the privileged where it isn’t”. In much the same way, why isn’t it sensible to ask why people believe in astrology instead of going hammer and tongs with falsification?

Featured image credit: geralt/pixabay.

Can science and philosophy mix constructively?

Quantum mechanics can sometimes be very hard to understand, so much so that even thinking about it becomes difficult. This could be because its foundations lay in the action-centric depiction of reality that slowly rejected its origins and assumed a thought-centric one garb.

In his 1925 paper on the topic, physicist Werner Heisenberg used only observable quantities to denote physical phenomena. He also pulled up Niels Bohr in that great paper, saying, “It is well known that the formal rules which are used [in Bohr’s 1913 quantum theory] for calculating observable quantities such as the energy of the hydrogen atom may be seriously criticized on the grounds that they contain, as basic elements, relationships between quantities that are apparently unobservable in principle, e.g., position and speed of revolution of the electron.”

A true theory

Because of the uncertainty principle, and other principles like it, quantum mechanics started to develop into a set of theories that could be tested against observations, and that, to physicists, left very little to thought experiments. Put another way, there was nothing a quantum-physicist could think up that couldn’t be proved or disproved experimentally. This way of looking at the world – in philosophy – is called logical positivism.

This made quantum mechanics a true theory of reality, as opposed to a hypothetical, unverifiable one.

However, even before Heisenberg’s paper was published, positivism was starting to be rejected, especially by chemists. An important example was the advent of statistical mechanics and atomism in the early 19th century. Both of them interpreted, without actual physical observations, that if two volumes of hydrogen and one volume of oxygen combined to form water vapor, then a water molecule would have to comprise two atoms of hydrogen and one atom of oxygen.

A logical positivist would have insisted on actually observing the molecule individually, but that was impossible at the time. This insistence on submitting physical proof, thus, played an adverse role in the progress of science by delaying/denying success its due.

As time passed, the failures of positivism started to take hold on quantum mechanics. In a 1926 conversation with Albert Einstein, Heisenberg said, “… we cannot, in fact, observe such a path [of an electron in an atom]; what we actually record are the frequencies of the light radiated by the atom, intensities and transition probabilities, but no actual path.” And since he held that any theory ought only to be a true theory, he concluded that these parameters must feature in the theory, and what it projected, as themselves instead of the unobservable electron path.

This wasn’t the case.

Gaps in our knowledge

Heisenberg’s probe of the granularity of nature led to his distancing from the theory of logical positivism. And Steven Weinberg, physicist and Nobel Laureate, uses just this distancing to harshly argue in a 1994 essay, titled Against Philosophy, that physics has never benefited from the advice of philosophers, and when it does, it’s only to negate the advice of another philosopher – almost suggesting that ‘science is all there is’ by dismissing the aesthetic in favor of the rational.

In doing so, Weinberg doesn’t acknowledge the fact that science and philosophy go hand in hand; what he has done is simply to outline the failure of logical positivism in the advancement of science.

At the simplest, philosophy in various forms guides human thought toward ideals like objective truth and is able to establish their superiority over subjective truths. Philosophy also provides the framework within which we can conceptualize unobservables and contextualize them in observable space-time.

In fact, Weinberg’s conclusion brings to mind an article in Nature News & Comment by Daniel Sarewitz. In the piece, Sarewitz, a physicist, argued that for someone who didn’t really know the physics supporting the Higgs boson, its existence would have to be a matter of faith than one of knowledge. Similarly, for someone who couldn’t translate electronic radiation to ‘mean’ the electron’s path, the latter would have to be a matter of faith or hope, not a bit of knowledge.

Efficient descriptions

A more well-defined example is the theory of quarks and gluons, both of which are particles that haven’t been spotted yet but are believed to exist by the scientific community. The equipment to spot them is yet to be built and will cost hundreds of billions of dollars, and be orders of magnitude more sophisticated than the LHC.

In the meantime, unlike what Weinberg and like what Sarewitz would have you believe, we do rely on philosophical principles, like that of sufficient reasoning (Spinoza 1663Leibniz 1686), to fill up space-time at levels we can’t yet probe, to guide us toward a direction that we ought to probe after investing money in it.

This is actually no different from a layman going from understanding electric fields to supposedly understanding the Higgs field. At the end of the day, efficient descriptions make the difference.

Exchange of knowledge

This sort of dependence also implies that philosophy draws a lot from science, and uses it to define its own prophecies and shortcomings. We must remember that, while the rise of logical positivism may have shielded physicists from atomism, scientific verification through its hallowed method also did push positivism toward its eventual rejection.

The moral is that scientists must not reject philosophy for its passage through crests and troughs of credence because science also suffers the same passage. What more proof of this do we need than Popper’s and Kuhn’s arguments – irrespective of either of them being true?

Yes, we can’t figure things out with pure thought, and yes, the laws of physics underlying the experiences of our everyday lives are completely known. However, in the search for objective truth – whatever that is – we can’t neglect pure thought until, as Weinberg’s Heisenberg-example itself seems to suggest, we know everything there is to know, until science and philosophy, rather verification-by-observation and conceptualization-by-ideation, have completely and absolutely converged toward the same reality.

Until, in short, we can describe nature continuously instead of discretely.

Liberation of philosophical reasoning

By separating scientific advance from contributions from philosophical knowledge, we are advocating for the ‘professionalization’ of scientific investigation, that it must decidedly lack the attitude-born depth of intuition, which is aesthetic and not rational.

It is against such advocacy that American philosopher Paul Feyerabend voiced vehemently: “The withdrawal of philosophy into a ‘professional’ shell of its own has had disastrous consequences.” He means, in other words, that scientists have become too specialized and are rejecting the useful bits of philosophy.

In his seminal work Against Method (1975), Feyerabend suggested that scientists occasionally subject themselves to methodological anarchism so that they may come up with new ideas, unrestricted by the constraints imposed by the scientific method, freed in fact by the liberation of philosophical reasoning. These new ideas, he suggests, can then be reformulated again and again according to where and how observations fit into it.

In the meantime, the ideas are not born from observations but pure thought that is aided by scientific knowledge from the past. As Wikipedia puts it neatly: “Feyerabend was critical of any guideline that aimed to judge the quality of scientific theories by comparing them to known facts.” These ‘known facts’ are akin to Weinberg’s observables.

So, until the day we can fully resolve nature’s granularity, and assume the objective truth of no reality before that, Pierre-Simon Laplace’s two-century old words should show the way: “We may regard the present state of the universe as the effect of its past and the cause of its future” (An Essay on Probabilities, 1814).

This article, as written by me, originally appeared in The Hindu’s science blog, The Copernican, on June 6, 2013.

Can science and philosophy mix constructively?

'The School of Athens', painted by Rafael during the Renaissance in 1509-1511, shows philosophers, mathematicians and scientists of ancient Greece gathered together.
‘The School of Athens’, painted by Rafael during the Renaissance in 1509-1511, shows philosophers, mathematicians and scientists of ancient Greece gathered together. Photo: Wikimedia Commons

Quantum mechanics can sometimes be very hard to understand, so much so that even thinking about it becomes difficult. This could be because its foundations lay in the action-centric depiction of reality that slowly rejected its origins and assumed a thought-centric one garb.

In his 1925 paper on the topic, physicist Werner Heisenberg used only observable quantities to denote physical phenomena. He also pulled up Niels Bohr in that great paper, saying, “It is well known that the formal rules which are used [in Bohr’s 1913 quantum theory] for calculating observable quantities such as the energy of the hydrogen atom may be seriously criticized on the grounds that they contain, as basic elements, relationships between quantities that are apparently unobservable in principle, e.g., position and speed of revolution of the electron.”

A true theory

Because of the uncertainty principle, and other principles like it, quantum mechanics started to develop into a set of theories that could be tested against observations, and that, to physicists, left very little to thought experiments. Put another way, there was nothing a quantum-physicist could think up that couldn’t be proved or disproved experimentally. This way of looking at the world – in philosophy – is called logical positivism.

This made quantum mechanics a true theory of reality, as opposed to a hypothetical, unverifiable one.

However, even before Heisenberg’s paper was published, positivism was starting to be rejected, especially by chemists. An important example was the advent of statistical mechanics and atomism in the early 19th century. Both of them interpreted, without actual physical observations, that if two volumes of hydrogen and one volume of oxygen combined to form water vapor, then a water molecule would have to comprise two atoms of hydrogen and one atom of oxygen.

A logical positivist would have insisted on actually observing the molecule individually, but that was impossible at the time. This insistence on submitting physical proof, thus, played an adverse role in the progress of science by delaying/denying success its due.

As time passed, the failures of positivism started to take hold on quantum mechanics. In a 1926 conversation with Albert Einstein, Heisenberg said, “… we cannot, in fact, observe such a path [of an electron in an atom]; what we actually record are the frequencies of the light radiated by the atom, intensities and transition probabilities, but no actual path.” And since he held that any theory ought only to be a true theory, he concluded that these parameters must feature in the theory, and what it projected, as themselves instead of the unobservable electron path.This wasn’t the case.

Gaps in our knowledge

Heisenberg’s probe of the granularity of nature led to his distancing from the theory of logical positivism. And Steven Weinberg, physicist and Nobel Laureate, uses just this distancing to harshly argue in a 1994 essay, titled Against Philosophy, that physics has never benefited from the advice of philosophers, and when it does, it’s only to negate the advice of another philosopher – almost suggesting that ‘science is all there is’ by dismissing the aesthetic in favor of the rational.

In doing so, Weinberg doesn’t acknowledge the fact that science and philosophy go hand in hand; what he has done is simply to outline the failure of logical positivism in the advancement of science.

At the simplest, philosophy in various forms guides human thought toward ideals like objective truth and is able to establish their superiority over subjective truths. Philosophy also provides the framework within which we can conceptualize unobservables and contextualize them in observable space-time.

In fact, Weinberg’s conclusion brings to mind an article in Nature News & Comment by Daniel Sarewitz. In the piece, Sarewitz, a physicist, argued that for someone who didn’t really know the physics supporting the Higgs boson, its existence would have to be a matter of faith than one of knowledge. Similarly, for someone who couldn’t translate electronic radiation to ‘mean’ the electron’s path, the latter would have to be a matter of faith or hope, not a bit of knowledge.

Efficient descriptions

A more well-defined example is the theory of quarks and gluons, both of which are particles that haven’t been spotted yet but are believed to exist by the scientific community. The equipment to spot them is yet to be built and will cost hundreds of billions of dollars, and be orders of magnitude more sophisticated than the LHC.

In the meantime, unlike what Weinberg and like what Sarewitz would have you believe, we do rely on philosophical principles, like that of sufficient reasoning (Spinoza 1663Leibniz 1686), to fill up space-time at levels we can’t yet probe, to guide us toward a direction that we ought to probe after investing money in it.

This is actually no different from a layman going from understanding electric fields to supposedly understanding the Higgs field. At the end of the day, efficient descriptions make the difference.

Exchange of knowledge

This sort of dependence also implies that philosophy draws a lot from science, and uses it to define its own prophecies and shortcomings. We must remember that, while the rise of logical positivism may have shielded physicists from atomism, scientific verification through its hallowed method also did push positivism toward its eventual rejection. There was human agency in both these timelines, both motivated by either the support for or the rejection of scientific and philosophical ideas.

The moral is that scientists must not reject philosophy for its passage through crests and troughs of credence because science also suffers the same passage. What more proof of this do we need than Popper’s and Kuhn’s arguments – irrespective of either of them being true?

Yes, we can’t figure things out with pure thought, and yes, the laws of physics underlying the experiences of our everyday lives are completely known. However, in the search for objective truth –whatever that is – we can’t neglect pure thought until, as Weinberg’s Heisenberg-example itself seems to suggest, we know everything there is to know, until science and philosophy, rather verification-by-observation and conceptualization-by-ideation, have completely and absolutely converged toward the same reality.

Until, in short, we can describe nature continuously instead of discretely.

Liberation of philosophical reasoning

By separating scientific advance from contributions from philosophical knowledge, we are advocating for the ‘professionalization’ of scientific investigation, that it must decidedly lack the attitude-born depth of intuition, which is aesthetic and not rational.

It is against such advocacy that American philosopher Paul Feyerabend voiced vehemently: “The withdrawal of philosophy into a ‘professional’ shell of its own has had disastrous consequences.” He means, in other words, that scientists have become too specialized and are rejecting the useful bits of philosophy.

In his seminal work Against Method (1975), Feyerabend suggested that scientists occasionally subject themselves to methodological anarchism so that they may come up with new ideas, unrestricted by the constraints imposed by the scientific method, freed in fact by the liberation of philosophical reasoning.

These new ideas, he suggests, can then be reformulated again and again according to where and how observations fit into it. In the meantime, the ideas are not born from observations but pure thought that is aided by scientific knowledge from the past. As Wikipedia puts it neatly: “Feyerabend was critical of any guideline that aimed to judge the quality of scientific theories by comparing them to known facts.” These ‘known facts’ are akin to Weinberg’s observables.

So, until the day we can fully resolve nature’s granularity, and assume the objective truth of no reality before that, Pierre-Simon Laplace’s two-century old words should show the way: “We may regard the present state of the universe as the effect of its past and the cause of its future” (An Essay on Probabilities, 1814).

(This blog post first appeared at The Copernican on June 6, 2013.)