The WHA coronavirus resolution is not great for science

On May 19, member states of the WHO moved a vote in the World Health Assembly (WHA), asking for an independent investigation into the sources of the novel coronavirus.

Their exact demands were spelled out in a draft resolution that asked the WHO to, among other things, “identify the zoonotic source of the virus and the route of introduction to the human population, including the possible role of intermediate hosts, including through efforts such as scientific and collaborative field missions”.

The resolution was backed by 62 countries, including India, and the decision to adopt it was passed with 116 votes in favour, out of 194. This fraction essentially indicates that the overwhelming majority of WHO’s member states want to ‘reform’ the organisation towards a better response to the pandemic, especially in terms of obtaining information that they believe China has been reluctant to share.

The resolution follows from Australia’s demand in April 2020 for a public inquiry against China, suggesting that the Asian superpower was responsible for the virus and the global outbreak (not surprisingly, US President Donald Trump expressed his support). Together with the fact that the document doesn’t once mention China, the resolution is likely an expression of concern that seeks to improve international access to biological samples, specific locations and research data necessary to find out how the novel coronavirus came to infect humans, and which animal or avian species were intermediate hosts.

As it happens, this arguably legitimate demand doesn’t preclude the possibility that the resolution is motivated, at least in part, by the need to explore what is in many political leaders’ view the ‘alternative’ that the virus originated in a Chinese lab.

The WHA vote passed and the independent investigation will happen – but by who or how is unclear. Let’s assume for now that some team or other comes together and conducts the requisite studies.

What if the team does find that the virus is not lab-made? Will those WHO member states, and/or their politicians back home, that were in favour of the resolution to explore the ‘lab hypothesis’ let the matter rest? Or will they point fingers at the WHO and claim it is too favourable to China, as President Trump has already done and to which the resolution’s reformatory language alludes?

In fact, the investigation is unlikely to zero in on the virus’s origins if they were natural because too much time has passed since the first zoonotic spillover event. The bread crumbs could have long faded by the time the investigation team sets out on its task. It won’t be impossible, mind, but it will be very difficult and likely require many months to conclude.

But what if the investigation somehow finds that the virus was engineered in a lab and then leaked, either deliberately or accidentally? Will the scientists and those who believed them (including myself) stand corrected?

They will not. There’s a simple reason why: they – we – have thus far not been given enough evidence to reach this conclusion.

Indeed, there is already sufficient explanation these days to claim that the novel coronavirus is of natural origin and insufficient explanation that it was engineered. A study published on March 17, 2020, collected evidence for the former (and many others continue to do so). An excerpt from the conclusion:

The genomic features described here may explain in part the infectiousness and transmissibility of SARS-CoV-2 in humans. Although the evidence shows that SARS-CoV-2 is not a purposefully manipulated virus, it is currently impossible to prove or disprove the other theories of its origin described here. However, since we observed all notable SARS-CoV-2 features, including the optimised RBD and polybasic cleavage site, in related coronaviruses in nature, we do not believe that any type of laboratory-based scenario is plausible.

If there is any animosity at all directed at China for supposedly engineering the virus, the countries that backed the resolution could only have done so by actively ignoring the evidence that already exists to the contrary.

In this particular case, it becomes extremely important for the representatives of these countries to explain why they think the evidence that scientists have not been able to find actually exists, and that they are simply yet to discover it. That is, why do they think some pieces are missing from the puzzle?

There is of course room for a deeper counter-argument here, but it isn’t entirely tenable either. One could still argue that there might be a larger ‘super-theory’ that encompasses the present one even as it elucidates a non-natural origin for the virus. This is akin to the principle of correspondence in the philosophy of science. The advent of the theories of relativity did not invalidate the Newtonian theory of gravity. Instead, the former resemble the latter in the specific domain in which the latter is applicable. Similarly, a ‘super-theory’ of the virus’s origins could point to evidence of bioengineering even as its conclusions resemble the evidence I’m pointing to to ascertain that the virus is natural.

But even then, the question remains: Why do you think such a theory exists?

Without this information, we are at risk of wasting our time in each pandemic looking for alternate causes that may or may not exist, many of which are quite politically convenient as well.

Perhaps we can assimilate a sign of things to come based on Harsh Vardhan’s performance as the chairman of the WHA’s executive board. Vardhan was elected into this position at the same WHA that adopted the draft resolution, and his highest priority is likely to be the independent investigation that the resolution calls for. As it happens, according to OP8 of the resolution, the resolution:

… calls on international organisations and other relevant stakeholders to … address, and where relevant in coordination with Member States, the proliferation of disinformation and misinformation particularly in the digital sphere, as well as the proliferation of malicious cyber-activities that undermine the public health response, and support the timely provision of clear, objective and science-based data and information to the public.

India as a member state is certainly a stakeholder, and Nitin Gadkari, one of the country’s senior ministers, recently said in an interview that the novel coronavirus was made in a lab. This is misinformation plain and simple, and goes against the call for the “timely provision of clear, objective and science-based information to the public”. Will the chair address this, please – or even future instances of such imprudence?

Ultimately, unless the investigation ends with the conspiracists changing their minds, the only outcome that seems to be guaranteed is that scientists will know their leaders no longer trust their work.

Featured image: The assembly hall of the Palace of Nations, Geneva, where the World Health Assembly usually meets. Photo: Tom Page/Wikimedia Commons, CC BY-SA 2.0.

Jayant Narlikar’s pseudo-defence of Darwin

Jayant Narlikar, the noted astrophysicist and emeritus professor at the Inter-University Centre for Astronomy and Astrophysics, Pune, recently wrote an op-ed in The Hindu titled ‘Science should have the last word’. There’s probably a tinge of sanctimoniousness there, echoing the belief many scientists I’ve met have that science will answer everything, often blithely oblivious to politics and culture. But I’m sure Narlikar is not one of them.

Nonetheless, the piece IMO was good and not great because what Narlikar has written has been written in the recent past by many others, with different words. It was good because the piece’s author was Narlikar. His position on the subject is now in the public domain where it needs to be if only so others can now bank on his authority to stand up for science themselves.

Speaking of authority: there is a gaffe in the piece that its fans – and The Hindu‘s op-ed desk – appear to have glazed over. If they didn’t, it’s possible that Narlikar asked for his piece to be published without edits, and which could have either been further proof of sanctimoniousness or, of course, distrust of journalists. He writes:

Recently, there was a claim made in India that the Darwinian theory of evolution is incorrect and should not be taught in schools. In the field of science, the sole criterion for the survival of a theory is that it must explain all observed phenomena in its domain. For the present, Darwin’s theory is the best such theory but it is not perfect and leaves many questions unanswered. This is because the origin of life on earth is still unexplained by science. However, till there is a breakthrough on this, or some alternative idea gets scientific support, the Darwinian theory is the only one that should continue to be taught in schools.

@avinashtn, @thattai and @rsidd120 got the problems with this excerpt, particularly the part in bold, just right in a short Twitter exchange, beginning with this tweet (please click-through to Twitter to see all the replies):

Gist: the origin of life is different from the evolution of life.

But even if they were the same, as Narlikar conveniently assumes in his piece, something else should have stopped him. That something else is also what is specifically interesting for me. Sample what Narlikar said next and then the final line from the excerpt above:

For the present, Darwin’s theory is the best such theory but it is not perfect and leaves many questions unanswered. … However, till there is a breakthrough on this, or some alternative idea gets scientific support, the Darwinian theory is the only one that should continue to be taught in schools.

Darwin’s theory of evolution got many things right, continues to, so there is a sizeable chunk in the domain of evolutionary biology where it remains both applicable and necessary. However, it is confusing that Narlikar believes that, should some explanations for some phenomena thus far not understood arise, Darwin’s theories as a whole could become obsolete. But why? It is futile to expect a scientific theory to be able to account for “all observed phenomena in its domain”. Such a thing is virtually impossible given the levels of specialisation scientists have been able to achieve in various fields. For example, an evolutionary biologist might know how migratory birds evolved but still not be able to explain how some birds are thought to use quantum entanglement with Earth’s magnetic field to navigate.

The example Mukund Thattai provides is fitting. The Navier-Stokes equations are used to describe fluid dynamics. However, scientists have been studying fluids in a variety of contexts, from two-dimensional vortices in liquid helium to gas outflow around active galactic nuclei. It is only in some of these contexts that the Navier-Stokes equations are applicable; that they are not entirely useful in others doesn’t render the equations themselves useless.

Additionally, this is where Narlikar’s choice of words in his op-ed becomes more curious. He must be aware that his own branch of study, quantum cosmology, has thin but unmistakable roots in a principle conceived in the 1910s by Niels Bohr, with many implications for what he says about Darwin’s theories.

Within the boundaries of physics, the principle of correspondence states that at larger scales, the predictions of quantum mechanics must agree with those of classical mechanics. It is an elegant idea because it acknowledges the validity of classical, a.k.a. Newtonian, mechanics when applied at a scale where the effects of gravity begin to dominate the effects of subatomic forces. In its statement, the principle does not say that classical mechanics is useless because it can’t explain quantum phenomena. Instead, it says that (1) the two mechanics each have their respective domain of applicability and (2) the newer one must be resemble the older one when applied to the scale at which the older one is relevant.

Of course, while scientists have been able to satisfy the principle of correspondence in some areas of physics, an overarching understanding of gravity as a quantum phenomenon has remained elusive. If such a theory of ‘quantum gravity’ were to exist, its complicated equations would have to be able to resemble Newton’s equations and the laws of motion at larger scales.

But exploring the quantum nature of spacetime is extraordinarily difficult. It requires scientists to probe really small distances and really high energies. While lab equipment has been setup to meet this goal partway, it has been clear for some time that it might be easier to learn from powerful cosmic objects like blackholes.

And Narlikar has done just that, among other things, in his career as a theoretical astrophysicist.

I don’t imagine he would say that classical mechanics is useless because it can’t explain the quantum, or that quantum mechanics is useless because it can’t be used to make sense of the classical. More importantly, should a theory of quantum gravity come to be, should we discard the use of classical mechanics all-together? No.

In the same vein: should we continue to teach Darwin’s theories for lack of a better option or because it is scientific, useful and, through the fossil record, demonstrable? And if, in the future, an overarching theory of evolution comes along with the capacity to subsume Darwin’s, his ideas will still be valid in their respective jurisdictions.

As Thattai says, “Expertise in one part of science does not automatically confer authority in other areas.” Doesn’t this sound familiar?

Featured image credit: sipa/pixabay.

Bohr and the breakaway from classical mechanics

One hundred years ago, Niels Bohr developed the Bohr model of the atom, where electrons go around a nucleus at the center like planets in the Solar System. The model and its implications brought a lot of clarity to the field of physics at a time when physicists didn’t know what was inside an atom, and how that influenced the things around it. For his work, Bohr was awarded the physics Nobel Prize in 1922.

The Bohr model marked a transition from the world of Isaac Newton’s classical mechanics, where gravity was the dominant force and values like mass and velocity were accurately measurable, to that of quantum mechanics, where objects were too small to be seen even with powerful instruments and their exact position didn’t matter.

Even though modern quantum mechanics is still under development, its origins can be traced to humanity’s first thinking of energy as being quantized and not randomly strewn about in nature, and the Bohr model was an important part of this thinking.

The Bohr model

According to the Dane, electrons orbiting the nucleus at different distances were at different energies, and an electron inside an atom – any atom – could only have specific energies. Thus, electrons could ascend or descend through these orbits by gaining or losing a certain quantum of energy, respectively. By allowing for such transitions, the model acknowledged a more discrete energy conservation policy in physics, and used it to explain many aspects of chemistry and chemical reactions.

Unfortunately, this model couldn’t evolve continuously to become its modern equivalent because it could properly explain only the hydrogen atom, and it couldn’t account for the Zeeman effect.

What is the Zeeman effect? When an electron jumps from a higher to a lower energy-level, it loses some energy. This can be charted using a “map” of energies like the electromagnetic spectrum, showing if the energy has been lost as infrared, UV, visible, radio, etc., radiation. In 1896, Dutch physicist Pieter Zeeman found that this map could be distorted when the energy was emitted in the presence of a magnetic field, leading to the effect named after him.

It was only in 1925 that the cause of this behavior was found (by Wolfgang Pauli, George Uhlenbeck and Samuel Goudsmit), attributed to a property of electrons called spin.

The Bohr model couldn’t explain spin or its effects. It wasn’t discarded for this shortcoming, however, because it had succeeded in explaining a lot more, such as the emission of light in lasers, an application developed on the basis of Bohr’s theories and still in use today.

The model was also important for being a tangible breakaway from the principles of classical mechanics, which were useless at explaining quantum mechanical effects in atoms. Physicists recognized this and insisted on building on what they had.

A way ahead

To this end, a German named Arnold Sommerfeld provided a generalization of Bohr’s model – a correction – to let it explain the Zeeman effect in ionized helium (which is a hydrogen atom with one proton and one neutron more).

In 1924, Louis de Broglie introduced particle-wave duality into quantum mechanics, invoking that matter at its simplest could be both particulate and wave-like. As such, he was able to verify Bohr’s model mathematically from a waves’ perspective. Before him, in 1905, Albert Einstein had postulated the existence of light-particles called photons but couldn’t explain how they could be related to heat waves emanating from a gas, a problem he solved using de Broglie’s logic.

All these developments reinforced the apparent validity of Bohr’s model. Simultaneously, new discoveries were emerging that continuously challenged its authority (and classical mechanics’, too): molecular rotation, ground-state energy, Heisenberg’s uncertainty principle, Bose-Einstein statistics, etc. One option was to fall back to classical mechanics and rework quantum theory thereon. Another was to keep moving ahead in search of a solution.

However, this decision didn’t have to be taken because the field of physics itself had started to move ahead in different ways, ways which would become ultimately unified.

Leaps of faith

Between 1900 and 1925, there were a handful of people responsible for opening this floodgate to tide over the centuries old Newtonian laws. Perhaps the last among them was Niels Bohr; the first was Max Planck, who originated quantum theory when he was working on making light bulbs glow brighter. He found that the smallest bits of energy to be found in nature weren’t random, but actually came in specific amounts that he called quanta.

It is notable that when either of these men began working on their respective contributions to quantum mechanics, they took a leap of faith that couldn’t be spanned by purely scientific reasoning, as is the dominant process today, but by faith in philosophical reasoning and, simply, hope.

For example, Planck wasn’t fond of a class of mechanics he used to establish quantum mechanics. When asked about it, he said it was an “act of despair”, that he was “ready to sacrifice any of [his] previous convictions about physics”. Bohr, on the other hand, had relied on the intuitive philosophy of correspondence to conceive of his model. In fact, even before he had received his Nobel in 1922, Bohr had begun to deviate from his most eminent finding because it disagreed with what he thought were more important, and to be preserved, foundational ideas.

It was also through this philosophy of correspondence that the many theories were able to be unified over the course of time. According to it, a new theory should replicate the results of an older, well-established one in the domain where it worked.

Coming a full circle

Since humankind’s investigation into the nature of physics has proceeded from the large to the small, new attempts to investigate from the small to the large were likely to run into old theories. And when multiple new quantum theories were found to replicate the results of one classical theory, they could be translated between each other by corresponding through the old theory (thus the name).

Because the Bohr model could successfully explain how and why energy was emitted by electrons jumping orbits in the hydrogen atom, it had a domain of applicability. So, it couldn’t be entirely wrong and would have to correspond in some way with another, possibly more successful, theory.

Earlier, in 1924, de Broglie’s formulation was suffering from its own inability to explain certain wave-like phenomena in particulate matter. Then, in 1926, Erwin Schrodinger built on it and, like Sommerfeld did with Bohr’s ideas, generalized them so that they could apply in experimental quantum mechanics. The end result was the famous Schrodinger’s equation.

The Sommerfeld-Bohr theory corresponds with the equation, and this is where it comes “full circle”. After the equation became well known, the Bohr model was finally understood as being a semi-classical approximation of the Schrodinger equation. In other words, the model represented some of the simplest corrections to be made to classical mechanics for it to become quantum in any way.

An ingenious span

After this, the Bohr model was, rather became, a fully integrable part of the foundational ancestry of modern quantum mechanics. While its significance in the field today is great yet still one of many like it, by itself it had a special place in history: a bridge, between the older classical thinking and the newer quantum thinking.

Even philosophically speaking, Niels Bohr and his pathbreaking work were important because they planted the seeds of ingenuity in our minds, and led us to think outside of convention.

This article, as written by me, originally appeared in The Copernican science blog on May 19, 2013.

Bohr and the breakaway from classical mechanics

Niels Bohr, 1950.
Niels Bohr, 1950. Photo: Blogspot

One hundred years ago, Niels Bohr developed the Bohr model of the atom, where electrons go around a nucleus at the centre like planets in the Solar System. The model and its implications brought a lot of clarity to the field of physics at a time when physicists didn’t know what was inside an atom, and how that influenced the things around it. For his work, Bohr was awarded the physics Nobel Prize in 1922.

The Bohr model marked a transition from the world of Isaac Newton’s classical mechanics, where gravity was the dominant force and values like mass and velocity were accurately measurable, to that of quantum mechanics, where objects were too small to be seen even with powerful instruments and their exact position didn’t matter.

Even though modern quantum mechanics is still under development, its origins can be traced to humanity’s first thinking of energy as being quantised and not randomly strewn about in nature, and the Bohr model was an important part of this thinking.

The Bohr model

According to the Dane, electrons orbiting the nucleus at different distances were at different energies, and an electron inside an atom – any atom – could only have specific energies. Thus, electrons could ascend or descend through these orbits by gaining or losing a certain quantum of energy, respectively. By allowing for such transitions, the model acknowledged a more discrete energy conservation policy in physics, and used it to explain many aspects of chemistry and chemical reactions.

Unfortunately, this model couldn’t evolve continuously to become its modern equivalent because it could properly explain only the hydrogen atom, and it couldn’t account for the Zeeman effect.

What is the Zeeman effect? When an electron jumps from a higher to a lower energy-level, it loses some energy. This can be charted using a “map” of energies like the electromagnetic spectrum, showing if the energy has been lost as infrared, UV, visible, radio, etc., radiation. In 1896, Dutch physicist Pieter Zeeman found that this map could be distorted when the energy was emitted in the presence of a magnetic field, leading to the effect named after him.

It was only in 1925 that the cause of this behaviour was found (by Wolfgang Pauli, George Uhlenbeck and Samuel Goudsmit), attributed to a property of electrons called spin.

The Bohr model couldn’t explain spin or its effects. It wasn’t discarded for this shortcoming, however, because it had succeeded in explaining a lot more, such as the emission of light in lasers, an application developed on the basis of Bohr’s theories and still in use today.

The model was also important for being a tangible breakaway from the principles of classical mechanics, which were useless at explaining quantum mechanical effects in atoms. Physicists recognised this and insisted on building on what they had.

A way ahead

To this end, a German named Arnold Sommerfeld provided a generalisation of Bohr’s model – a correction – to let it explain the Zeeman effect in ionized helium (which is a hydrogen atom with one proton and one neutron more).

In 1924, Louis de Broglie introduced particle-wave duality into quantum mechanics, invoking that matter at its simplest could be both particulate and wave-like. As such, he was able to verify Bohr’s model mathematically from a waves’ perspective. Before him, in 1905, Albert Einstein had postulated the existence of light-particles called photons but couldn’t explain how they could be related to heat waves emanating from a gas, a problem he solved using de Broglie’s logic.

All these developments reinforced the apparent validity of Bohr’s model. Simultaneously, new discoveries were emerging that continuously challenged its authority (and classical mechanics’, too): molecular rotation, ground-state energy, Heisenberg’s uncertainty principle, Bose-Einstein statistics, etc. One option was to fall back to classical mechanics and rework quantum theory thereon. Another was to keep moving ahead in search of a solution.

However, this decision didn’t have to be taken because the field of physics itself had started to move ahead in different ways, ways which would become ultimately unified.

Leaps of faith

Between 1900 and 1925, there were a handful of people responsible for opening this floodgate to tide over the centuries old Newtonian laws. Perhaps the last among them was Niels Bohr; the first was Max Planck, who originated quantum theory when he was working on making light bulbs glow brighter. He found that the smallest bits of energy to be found in nature weren’t random, but actually came in specific amounts that he called quanta.

It is notable that when either of these men began working on their respective contributions to quantum mechanics, they took a leap of faith that couldn’t be spanned by purely scientific reasoning, as is the dominant process today, but by faith in philosophical reasoning and, simply, hope.

For example, Planck wasn’t fond of a class of mechanics he used to establish quantum mechanics. When asked about it, he said it was an “act of despair”, that he was “ready to sacrifice any of [his] previous convictions about physics”. Bohr, on the other hand, had relied on the intuitive philosophy of correspondence to conceive of his model. In fact, only a few years after he had received his Nobel in 1922, Bohr had begun to deviate from his most eminent finding because it disagreed with what he thought were more important, and to be preserved, foundational ideas.

It was also through this philosophy of correspondence that the many theories were able to be unified over the course of time. According to it, a new theory should replicate the results of an older, well-established one in the domain where it worked.

Coming a full circle

Since humankind’s investigation into the nature of physics has proceeded from the large to the small, new attempts to investigate from the small to the large were likely to run into old theories. And when multiple new quantum theories were found to replicate the results of one classical theory, they could be translated between each other by corresponding through the old theory (thus the name).

Because the Bohr model could successfully explain how and why energy was emitted by electrons jumping orbits in the hydrogen atom, it had a domain of applicability. So, it couldn’t be entirely wrong and would have to correspond in some way with another, possibly more succesful, theory.

Earlier, in 1924, de Broglie’s formulation was suffering from its own inability to explain certain wave-like phenomena in particulate matter. Then, in 1926, Erwin Schrodinger built on it and, like Sommerfeld did with Bohr’s ideas, generalised them so that they could apply in experimental quantum mechanics. The end result was the famous Schrodinger’s equation.

The Sommerfeld-Bohr theory corresponds with the equation, and this is where it comes “full circle”. After the equation became well known, the Bohr model was finally understood as being a semi-classical approximation of the Schrodinger equation. In other words, the model represented some of the simplest corrections to be made to classical mechanics for it to become quantum in any way.

An ingenious span

After this, the Bohr model was, rather became, a fully integrable part of the foundational ancestry of modern quantum mechanics. While its significance in the field today is great yet still one of many like it, by itself it had a special place in history: a bridge, between the older classical thinking and the newer quantum thinking.

Even philosophically speaking, Niels Bohr and his path-breaking work were important because they planted the seeds of ingenuity in our minds, and led us to think outside of convention.