Scientists’ conduct affects science

Nature News has published an excellent feature by Edwin Cartlidge on the “wall of scepticism” that arose in response to the latest superconductivity claim from Ranga Dias et al., purportedly in a compound called nitrogen-doped lutetium hydride. It seems the new paper has earned a note of concern as well, after various independent research groups failed to replicate the results. Dias & co. had had another paper, claiming superconductivity in a different material, retracted in October 2022, two years after its publication. All these facts together raise a few implications about the popular imagination of science.

First, the new paper was published by Nature, a peer-reviewed journal. And Jorge Hirsch of the University of California, San Diego, told Nature News “that editors should have first resolved the question about the provenance of the raw data in the retracted 2020 Nature article before even considering the 2023 paper”. So the note reaffirms the role of peer-review being limited to checking whether the information presented in a paper is consistent with the paper’s conclusions, and not checking whether it is well-founded and has integrity in and of itself.

Second, from Nature News:

“Researchers from four other groups, meanwhile, told Nature’s news team that they had abandoned their own attempts to replicate the work or hadn’t even tried. Eremets said that he wasted time on the CSH work, so didn’t bother with LuNH. ‘I just ignored it,’ he says.”

An amusing illustration, I think, that speaks against science’s claims to being impartial, etc. In a perfectly objective world, Dias et al.’s previous work shouldn’t have mattered to other scientists, who should have endeavoured to verify the claims in the new paper anew, given that it’s a fairly sensational claim and because it was published in a ‘prestigious’ peer-reviewed journal. But, as Eremets said, “the synthesis protocol wasn’t clear in the paper and Dias didn’t help to clarify it”.

The reciprocal is also true: Dias chose to share samples of nitrogen-doped lutetium hydride that his team had prepared only with Russell Hemley, who studies material chemistry at the University of Illinois, Chicago, (and some other groups that he refused to name) – and that Hemley is one of the researchers who hasn’t criticised Dias’s findings. Hemley is also not an independent researcher; he and Dias worked together on the work in the 2020 paper that was later retracted. Dias should ideally have shared the samples with everyone. But scientists’ social conduct does matter, influencing decisions about how other scientists believe they should respond.

Speaking of which: Nature (the journal) on the other hand doesn’t look at past work and attendant misgivings when judging each paper. From Nature News (emphasis added):

The editor’s note added to the 2023 paper on 1 September, saying that the reliability of data are in question, adds that “appropriate editorial action will be taken once this matter is resolved.” Karl Ziemelis, Nature’s chief applied- and physical-sciences editor, based in London, says that he and his colleagues are “assessing concerns” about the paper, and adds: “Owing to the confidentiality of the peer-review process we cannot discuss specific details of what transpired.” As for the 2020 paper, Ziemelis explains that they decided not to look into the origin of the data once they had established problems with the data processing and then retracted the research. “Our broader investigation of that work ceased at that point,” he says. Ziemelis adds that “all submitted manuscripts are considered independently on the basis of the quality and timeliness of their science”.

The refusal to share samples echoes an unusual decision by the journal Physical Review B to publish a paper authored by researchers at Microsoft, in which they reported discovery a Majorana zero mode – an elusive particle (in a manner of speaking) that could lead the way to building quantum ‘supercomputers’. However, it seems the team withheld some information that independent researchers could have used to validate the findings, presumably because it’s intellectual property. Rice University physics professor Douglas Natelson wrote on his blog:

The rationale is that the community is better served by getting this result into the peer-reviewed literature now even if all of the details aren’t going to be made available publicly until the end of 2024. I don’t get why the researchers didn’t just wait to publish, if they are so worried about those details being available.


Take all of these facts and opinions together and ask yourself: what then is the scientific literature? It probably contains many papers that have cleared peer-review but whose results won’t replicate. Some papers may or may not replicate but we’ll never know for a couple years. It also doesn’t contain replication studies that might have been there if the replicators and the original research group were on amicable terms. What also do these facts and view imply for the popular conception of science?

Every day, I encounter two broad kinds of critical imaginations of science. One has emerged from the practitioners of science, and those studying its philosophy, history, sociology, etc. These individuals have debated the notions presented above to varying degrees. But there is also a class of people in India that wields science as an antidote to what it claims is the state’s collusion with pseudoscience, and such collusion as displacing what is apparently science’s rightful place in the Indian society-state: as the best and sole arbiter of facts and knowledge. This science is apparently a unified whole, objective, self-correcting, evidence-based, and anti-faith. I imagine this science needs to have these characteristics in order to effectively challenge, in the courts of public opinion, the government’s oft-mistaken claims.

At the same time, the ongoing Dias et al. saga reminds us that any ‘science’ imprisoned by these assumptions would dismiss the events and forces that would actually help it grow – such as incentivising good-faith actions, acknowledging the labour required to keep science honest and reflexive, discussing issues resulting from the cultural preferences of its exponents, paying attention to social relationships, heeding concerns about the effects of one’s work and conduct on the field, etc. In the words of Paul Feyerabend (Against Method, third ed., 1993): “Science is neither a single tradition, nor the best tradition there is, except for people who have become accustomed to its presence, its benefits and its disadvantages.”

There’s a scientistic eclipse

There is a solar eclipse today and news websites are as usual participating in amplifying nonsense. It’s prima facie not nonsense in and of itself but because it’s not qualified as astrological material. That is, it’s an example of news sites not exercising good judgment.

Science doesn’t have a monopoly on sense-making, so calling it “nonsense” isn’t fair. Science also isn’t implicitly entitled to be the prime belief system. So while these assertions are non-scientific, they shouldn’t be qualified with respect to meaning but to the scientific truth-value.

But assuming science has a monopoly implicitly elevates science’s ability and efficacy to make sense, especially in a non-exclusionary way. People who wouldn’t eat during an eclipse aren’t necessarily wanting for scientific facts. Sometimes, it’s because of how scientific literacy is currently limited. Pseudoscience enslaves but so does science. So we should be mindful of the words we use to describe pseudoscience, and keep open the possibility that the social consequences of these two knowledge systems can, in quality, overlap. As I wrote in an older post:

There is a hegemony of science as well. Beyond the mythos of its own cosmology (to borrow Paul Feyerabend’s quirky turn of phrase in Against Method), there is also the matter of who controls knowledge production and utilisation. In Caliban and the Witch (1998), Sylvia Federici traces the role of the bourgeoisie in expelling beliefs in magic and witchcraft in preindustrial Europe only to prepare the worker’s body to accommodate the new rigours of labour under capitalism. She writes, “Eradicating these practices was a necessary condition for the capitalist rationalisation of work, since magic appeared as an illicit form of power and an instrument to obtain what one wanted without work, that is, a refusal of work in action. ‘Magic kills industry,’ lamented Francis Bacon…”.

For example, hardcore, or by that same measure naïve, rationalists have been known to erect a pandal on the road and eat food during an eclipse, apparently in defiance of the beliefs of others. But that’s only defiance per se. Their actions say that they have underestimated the agility of the belief system and apparently ignored its punitive mechanics. Ultimately, it comes off as ignorant and is thus easily dismissed.

Why is science “the best”? It isn’t, and such scientism is harmful. What is “the best” is whatever empowers. The knowledge systems of Indigenous peoples predates science. Are they automatically disempowered? No. Other eclipse beliefs exist because of where social power and legitimacy lie. People believe it because others believe it. As Renny Thomas’s new book suggests, they may also believe it because we have erected a false binary between science and religion.

Zee News’s wording also presumes all “Indians” are “orthodox Hindus” and that their beliefs are indistinguishable from (unverified) Ayurvedic prescriptions – a form of the religion/culture superposition to which the regime has often taken recourse. (There is also a Hindiness to its language: “grahan” v. “grahanam”, for example.)

If astrology is pseudoscience, is science pseudo-astrology? The Indian right-wing is fixated on impressing the West, otherwise it may have noticed this. 😜 This said, astrology is bad and must be curtailed because it has a greater potential for harm. But we won’t fix anything by reflexively replacing it with another hard-to-independently-verify knowledge system. If one enslaves, the other must liberate. Otherwise, to quote from an older post:

But using science communication as a tool to dismantle myths, instead of tackling superstitious rituals that (to be lazily simplistic) suppress the acquisition of potentially liberating knowledge, is to create an opposition that precludes the peaceful coexistence of multiple knowledge systems. In this setting, science communication perpetuates the misguided view that science is the only useful way to acquire and organise our knowledge — which is both ahistorical and injudicious.

This post is also available as a Twitter thread.

‘Science people’

Two of the most annoying kinds of ‘science people’ I’ve come across on social media of late:

  • Those who perform rationalism – These people seem to know a small subset of things well and the rest on faith, and claim to know that “science can explain everything” without being able to explain it themselves. Champions of science’s right to explanation, typically to the exclusion of social and cultural influences and to the rejection of faith/religion. Often woke-types found explaining “science” they read in some paper and more often than not (and inadvertently) advancing scientistic positions.
  • Vocational practitioners of science – These people seem to know a small subset of things well but are unable to apply the fundamentals of what they’ve learnt to other topics, typically to the effect that we have well-educated people openly suspecting if vaccines cause disease or that China created the virus. Often engineers of some sort, probably because of the environments of entitlement in which they’re trained and subsequently employed, and frequently centrists.

Of course, a trait that partly defines these two groups is also a strong confounding factor: these are often the loudest people on the social media – so they get noticed more, while the quieter but likely more sensible people are noticed less, leading to inchoate observations like this one. However, these two groups of people remain the most annoying.

Slate Star Codex: No time for malice

This post benefited from valuable input and feedback from Thomas Manuel.

To the uninitiated: Scott Alexander Siskind is a noted member of the international community of rationalists and wrote the once-celebrated blog Slate Star Codex. I use the past tense because Siskind used to write this blog from the relative obscurity afforded by using only his first and middle names – ‘Scott Alexander’ – and which was threatened after a New York Times reporter got in touch to profile him, and then decided to ‘out’ his identity thanks to some editorial rule the reporter said he was was bound by.

Siskind, fearing for his privacy as well as the wellbeing of his clients (he’s a psychiatrist by profession) threatened to delete his entire blog if the reporter didn’t back off – and then proceeded to do so. At the time of the incident, Siskind also called for support from his readers, who flooded the New York Times with telephone calls, emails and online comments, cancelled their subscriptions in droves, and also doxxed (revealed online without permission and with an intent to harass) the reporter’s personal information. Siskind subsequently restored his blog posts and also moved to Substack, where he currently writes under the title ‘Astral Codex Ten’ using his full name.

The New York Times profile in question was published on February 14 under the authorship of reporter Cade Metz. Many members of the rationalists’ community centred on Slate Star Codex have described the article as a “hit job” and it has since become something of a referendum, at least on one other intellectual’s blog (Shtetl Optimized by Scott Aaronson), on the appropriate way to sanction journalists and/or news publishers that fail to properly represent the views of their subjects to their audience.

(I’m an occasional reader of Slate Star Codex, now Astral Codex Ten, but have never been a full participant of the rationalist movement. I occasionally pop in and out and absorb interesting ideas. I also don’t defend the rationalists, being aware of the tendency of most members of this community to over-rationalise, to debate ideas without paying attention to their social consequences, which often lie outside the realm of reason, and to be cynical of politics.)

Here are a few contiguous paragraphs from the article that I think capture its spirit and purpose:

Part of the appeal of Slate Star Codex, faithful readers said, was Mr. Siskind’s willingness to step outside acceptable topics. But he wrote in a wordy, often roundabout way that left many wondering what he really believed.

Mr. Aaronson, the University of Texas professor, was turned off by the more rigid and contrarian beliefs of the Rationalists, but he is one of the blog’s biggest champions and deeply admired that it didn’t avoid live-wire topics.

“It must have taken incredible guts for Scott to express his thoughts, misgivings and questions about some major ideological pillars of the modern world so openly, even if protected by a quasi-pseudonym,” he said.

It was the protection of that “quasi-pseudonym” that rankled Mr. Siskind when I first got in touch with him. He declined to comment for this article.

As he explored science, philosophy and A.I., he also argued that the media ignored that men were often harassed by women. He described some feminists as something close to Voldemort, the embodiment of evil in the Harry Potter books. He said that affirmative action was difficult to distinguish from “discriminating against white men.”

In one post, he aligned himself with Charles Murray, who proposed a link between race and I.Q. in “The Bell Curve.” In another, he pointed out that Mr. Murray believes Black people “are genetically less intelligent than white people.”

He denounced the neoreactionaries, the anti-democratic, often racist movement popularized by Curtis Yarvin. But he also gave them a platform. His “blog roll” – the blogs he endorsed – included the work of Nick Land, a British philosopher whose writings on race, genetics and intelligence have been embraced by white nationalists.

In 2017, Mr. Siskind published an essay titled “Gender Imbalances Are Mostly Not Due to Offensive Attitudes.” The main reason computer scientists, mathematicians and other groups were predominantly male was not that the industries were sexist, he argued, but that women were simply less interested in joining.

That week, a Google employee named James Damore wrote a memo arguing that the low number of women in technical positions at the company was a result of biological differences, not anything else – a memo he was later fired over. One Slate Star Codex reader on Reddit noted the similarities to the writing on the blog.

Mr. Siskind, posting as Scott Alexander, urged this reader to tone it down. “Huge respect for what you’re trying, but it’s pretty doomed,” he wrote. “If you actually go riding in on a white horse waving a paper marked ‘ANTI-DIVERSITY MANIFESTO,’ you’re just providing justification for the next round of purges.”

There are some obvious problems with the article. The foremost is that Metz makes some questionable assumptions about the foundations of Siskind’s arguments to the effect that Siskind sounds like a conservative, dogmatic person who draws on questionable scholarship to frame his thoughts. This is quite off-target. The article also oversimplifies some of the rationalist community’s positions, although this may be unavoidable in anything less than a book-length treatment of such an involved subject.

On the other hand, a not inconsiderable amount of the Slate Star Codex community’s derision towards the New York Times seems to be rooted in the idea that the newspaper is pursuing a smear campaign – ostensibly in retaliation for Siskind asking his (sizeable) audience to call on New York Times editors to not have his name outed, but who also went on to doxx Metz. Siskind wrote on his Substack after the article was published:

The New York Times backed off briefly as I stopped publishing, but I was also warned by people “in the know” that as soon as they got an excuse they would publish something as negative as possible about me, in order to punish me for embarrassing them.

The “in the know” bit sounds funny to me because, based on my experience at The Hindu at least, it’s extremely unlikely for a legacy newspaper to identify one person that’s giving one reporter a tough time as a threat to the extent that the institution, as such, considers intentionally doxxing him – not to mention an accusation like this also insults the intelligence of the people it. I agree with journalist and Gawker cofounder Elizabeth Spiers’s take on this view:

SSC is influential in a small but powerful corner of the tech industry. It is not, however, a site that most people, even at The New York Times, are aware exists—and certainly, the Times and its journalists are not threatened by its existence. They are not out to destroy the site, or “get” Scott, or punish him. At the risk of puncturing egos: they are not thinking about Scott or the site at all. Even the reporter working on the story has no especial investment in its subject.

I also agree with Will Wilkinson, a politics writer and author, on the limited point of the Slate Star Codex community’s conviction that Metz’s actions were malicious, that Metz or the New York Times were “out to get them”. Instead, Wilkinson argues, the community need only examine the sequence of events from Metz’s point of view to find that common sense offers a simpler and more rational explanation.

Somebody tells Metz about SSC, he finds it really interesting, wants to write some kind of article about Siskind, his popular and influential blog, and the fascinating community around it. He starts to do some preliminary research. … Metz contacts Siskind and at some point he tells Scott that he already knows his real name and at some point Scott tells Metz it’s very important that he doesn’t use his real name. Metz says, sorry, house rules say I have to use your real name. To Metz, things are already getting pretty interesting. He’s a reporter. He’s not going to take what people tell him at face value. He’s probably wondering why Scott’s really sweating so hard about his real name. Then, at some point Siskind flips the fuck out and tells the Times that he’s going to burn SSC to the ground if they don’t promise not to use his real name. At this juncture basically any competent reporter is going to think, “Whoa! Yeah, there’s something deeper here for sure.”

Well, the Times won’t promise, so Siskind actually does it. This seems super-crazy and the natural journalistic response to it is “What the hell is this man hiding? What’s he so afraid I’ll find on his blog?”

Let’s pause to acknowledge that Siskind eventually acknowledged that he had been behaving in a way that seemed incredibly suspicious to outside observers and that it does make a great deal of completely non-malicious sense for a journalist to tune into this. It’s interesting, though, that this apparently hadn’t occurred to him. “Contacts in the news industry” had to tell him.

But as it happens, Siskind had assumed similarly well before the New York Times article was published: that Metz or the newspaper may not be thinking as much about Slate Star Codex’s true identity as much as Siskind and the community was:

I think they just didn’t expect me to care about anonymity as much as I did. In fact, most of my supporters, and most of the savvy people giving me advice, didn’t expect me to care as much as I did. … Realistically, my anonymity let me feel safe and comfortable. But it probably wasn’t literally necessary to keep me alive. I feel bad admitting this, like I conscripted you all into a crusade on false pretenses. Am I an entitled jerk for causing such a stir just so I can feel safe and comfortable? I’m sure the New York Times customer service representatives who had to deal with all your phone calls thought so. …

In the New York Times‘ worldview, they start with the right to dox me, and I had to earn the right to remain anonymous by proving I’m the perfect sympathetic victim who satisfies all their criteria of victimhood. But in my worldview, I start with the right to anonymity, and they need to make an affirmative case for doxxing me. I admit I am not the perfect victim. The death threats against me are all by losers who probably don’t know which side of a gun you shoot someone with. If anything happened at work, it would probably inconvenience me and my patients, but probably wouldn’t literally kill either of us. …

I don’t think anyone at the Times bore me ill will, at least not originally. But somehow that just made it even more infuriating. In Street Fighter, the hero confronts the Big Bad about the time he destroyed her village. The Big Bad has destroyed so much stuff he doesn’t even remember: “For you, the day [I burned] your village was the most important day of your life. For me, it was Tuesday.” That was the impression I got from the Times. They weren’t hostile. I wasn’t a target they were desperate to take out. The main emotion I was able to pick up from them was annoyance that I was making their lives harder by making a big deal out of this. For them, it was Tuesday.

I sort of also see Siskind’s point here: it’s unreasonable to destabilise a community because it failed to explain the terms of its existence to an interloper. Instead, his anonymity and the reasons for it could have been part of the story, irrespective of Metz’s and others’ assertion that Scott Alexander’s last name wasn’t hard to find.

Some others, but also Wilkinson, have read this ‘privacy v. public interest’ contention a bit differently, by invoking Siskind’s presumed absolute right to free speech. I’m personally uncomfortable with the Slate Star Codex community’s view that the interference of Siskind’s right to free speech with his profession as a psychiatrist (and the wellbeing of his patients) shouldn’t be seen as a confounding factor in his decision to react with arguably disproportionate alarm when Metz expressed his intent to use Siskind’s full name – and that the newspaper isn’t very much to blame here. But I can’t be sure if this matters to how Metz constructed the Slate Star Codex profile.

Very broadly, Wilkinson questions the cons of free-speech absolutism not just vis-à-vis the topics that benefit from such a license (like white supremacy or “women have smaller brains”) but vis-à-vis the concept itself. He argues that the absolute right to free speech and a right to anonymity can’t go together, and it’s possible from a journalistic standpoint that Metz may have been encouraged by this incompatibility and by the fact of Siskind’s name showing up after a few searches on Google to ‘reveal’ his last name.

But I think this argument is neither here nor there – plus the profile doesn’t contain any evidence that this is how Metz approached the decision (some anecdotal reports I came across suggested Metz was simply following some newsroom rule). This alternative also doesn’t sit well with Spiers’s and Siskind’s shared belief that the New York Times may never care about the consequences of its gaze on a particular subject more than the subject will.

But the profile being what it is, Scott Aaronson – and I’m sure many others – have decided to boycott Cade Metz, meaning they won’t speak to him on future stories, in an effort to register their disapproval.

Is this fair? I think it’s hard to be sure, although I also suspect this question may be moot. Right now, I’ve yet to find a self-consistent explanation for either party to stand its ground. The verbosity of all the arguments in this debate, save for the New York Times profile itself, is also quite suspicious. I’m implicitly wary of arguments that overuse words because it’s a sign, to me, that the author is either attempting to massage the reader’s intelligence into accepting an otherwise unintelligent, and often deleterious, proposition or that the author is trying to make a point that they themselves don’t fully understand yet. (I may be guilty of either given the length of this post.)

For now, I can see why, without agreeing with it, Aaronson et al have decided to boycott Metz. The relationship between a reporter and their source has only one degree of freedom – trust – and that’s what Aaronson et al have resolved to strike at. But based on what I have read, I don’t see water in the community’s argument that Metz’s efforts have resulted in a “hit job” that violated their trust, of being represented ‘fairly’, by focusing on the rationalist community’s negative attributes. This seems like the rationalists are conflating journalism and reputation management – even considering the New York Times has one of the world’s largest newspaper audiences and a single misinformed article can deal significant reputational damage.

In Aaronson’s and Siskind’s telling, Metz did the rationalists a disservice by focusing on the “wrong” parts of what made Slate Star Codex awesome. But as Wilkinson, Spiers and others have argued, their very ability and freedom to collect as rationalists and openly discuss potentially dangerous or even antisocial ideas is hard to separate from the fact that the rationalists are also “overwhelmingly white and male and clustered in a very narrow of range of heavily white, male analytical symbol manipulation occupations” – a fact that the rationalists tend to dismiss as a distraction.

On the other hand, Metz’s article – while definitely not a “hit job” – is flawed where it seems to imply Siskind’s guilt by association with writers he’s quoted, topped off by the decision to reveal Siskind’s identity. At the same time, Metz is also justified in framing the article the way he did, or worked with his editor to do so.

This isn’t just in terms of, as Spiers put it, going where the story took him but also of revealing a relatively small and cloistered community to the larger world that mostly didn’t know the community existed. And I sense that the two parties couldn’t agree on the terms of this act of revelation.

This speaks to the larger question of yearning for objectivity where there is none. To one group, Slate Star Codex appeared to be yet another portal to fascism-curious thinking that is sustained not-inexplicably by yet another group of white men, and had some notable connections to Silicon Valley. To the other, Slate Star Codex was a salon at which certain people could gather to discuss topics that other members of society had decided they couldn’t debate without also contravening the limitations imposed on free speech.

The values underlying these positions are largely incommensurable, and I suspect the rationalists came away smarting not because they didn’t see the incommensurability but because they expected Metz or anyone else to be objective to the extent that the topics of conversation in the Slate Star Codex community and the demographic characteristics of the people who tended to have them wouldn’t matter.

I realise that this is an older, more-well-hashed debate, and I’m questioning myself whether this whole ‘scandal’ – on which many smarter people have expended tens of thousands of words – can be distilled to such a simple premise. But I’m more certain that disillusionment with the ‘view from somewhere’ is part of the story, even if ironically so considering the New York Times was synonymous with the futile pursuit of objectivity during the Trump presidency.

The real story of ‘The Old Guard’

Spoiler alert: Don’t read this post if you intend to watch The Old Guard but haven’t done so yet.

The Old Guard, an action film starring Charlize Theron among others, released on Netflix on July 10. In a scene in the film, Copley (Chiwetel Ejiofor) delivers two undying men to the CEO of a pharmaceutical company (Harry Melling) only to watch the CEO, demanding that their proof of immortality be “indisputable”, stab them to death and then watch their wounds heal. After he’s had his fill, the CEO orders the men to be taken away to a lab for ‘tests’. Before he leaves the room, Copley walks up to the CEO and attempts to remind him that “this” – referring to their arrangement, pursuant to the CEO’s stated intention to mine the immortals’ genetic material for life-saving drugs – “is about science, not profits or sadism”.

The Old Guard has received good reviews, as you might know if you’ve already watched it, but perhaps the film’s entire story could have been non-existent were it not for Copley’s naïve beliefs, no?

At another point in the film, Copley talks about entering into his deal with Merrick, the CEO, because Copley’s wife’s death of ALS taught him that genetic gifts that could alleviate “needless suffering” should be shared with humanity, not hoarded by a few. A noble sentiment – and I almost fell for it until being jolted back by another character, who reminds Copley that the gift wasn’t his to give. In The Old Guard, it’s four white people who have been forced to give, but the argument is strengthened by the fact that it’s an apt metaphor for the real world, in which it’s often the people of the developing world, and in that world the most marginalised, doing the ‘giving’.

In effect, the film’s story is about Copley’s mistake and Copley fixing that mistake – except the mistake doesn’t seem defensible to me as much as it must have been born out of a long-standing ignorance of a bunch of issues, from self-determination to science’s need to be guided by politics. When Copley tells Merrick that “this is about science, not profits”, I laughed out loud, and my scalding hot tea poured out through my nose when he added “or sadism”. What kind of person arranges to violently capture four people who really don’t wish to be caught, puts them in chains, and brings them to a pharma company believing it’s neither for “profits” nor “sadism”?

Even more broadly, when has science ever not been for sadism or profits? Vast swathes of modern science as we know it – since the atomic bombings of Hiroshima and Nagasaki and the entry into consciousness in those moments of the science-military nexus, exemplified by the apoliticism of Enrico Fermi that, in the final analysis, had deeply political ramifications – have been for profits and power, if not directly sadism.

Modern medicine is not at all free of pain either. Even within the limited view of physical violence, drug trial protocols require a set of preclinical trials to be conducted in ‘animal models’, and many researchers who work with animals also grapple with mental health issues, for example in the form of compassion fatigue. Only in this decade or so have we begun to grow organs in the lab or virtual environments in computers to simulate the actions of different drugs, and even these solutions are eons away from entering regular practice. And then there’s the brutal history of medical and psychological experimentation that, at various points in time, overlapped disturbingly neatly with the day’s most significant human rights abuses.

If we considered violence of other forms as well – including but not limited to rationalists who wield ‘science’ to delegitimise non-scientific ways to organise and make sense of the world and to terrorise the followers of other traditions; to the West, which, “rather than improve conditions of work where necessary, or make a provision for proper career structures where they are lacking so as to attract local graduates, … has found it simpler and less expensive to import foreign doctors to work under conditions which locally trained doctors would not accept” (source); to even imperialist trade agreements that suppress local enterprise in favour of foreign imports – neither medicine nor the institutions responsible for its development are at all free of violence.

This said, I’m not railing against Copley here as much as his writers, Greg Rucka and Leandro Fernández. Even considered in toto, The Old Guard affords Copley the resolution of his moral crisis by facilitating the rescue of the ‘caged’ immortals – but in so doing legitimises the separation of scientific practice from cruelty and abuse. But as history has revealed on multiple occasions, science as so many of us would like it to be is so frequently not what it actually is. As a human enterprise, it’s dirty, fraught and contested. Most of all – likely to the chagrin of those who still believe there can be a functional line between science and politics that wouldn’t be to science’s detriment – it is negotiated. And the more we persist in our efforts to install the scientific enterprise on a pedestal, as being even if only in idea to be untainted by social and cultural considerations, the more we diminish its influence on society, the more we overlook its use unto oppressive ends and thus the more we empower those who do so.

Instead, what Copley should really have done after being contacted is deduce preemptively that Merrick is cruel and therefore Merrick’s practice of science is bound to be cruel, sign the contract (to keep the deal from going to someone else) and then stealthily undermine Merrick’s plans while also protecting the immortals. Then, once Merrick has been killed off (in order to make it a good action film), the immortals volunteer to have their genomes sequenced and the corresponding results uploaded onto a preprint server, and then recall all their time on this good Earth to write anecdotally well-supplied books about the real history of science.

The rationalists’ eclipse

The annular solar eclipse over South India on December 26 provided sufficient cause for casual and/or inchoate rationalism to make a rare public appearance – rarer than the average person who had decided to stay indoors for the duration of the event thanks to superstitious beliefs. Scientists and science communicators organised or participated in public events where they had arranged for special (i.e. protective) viewing equipment and created enough space for multiple people to gather and socialise.

However, some of these outings, spilling over into the social media, also included actions and narratives endeavouring to counter superstitions but overreaching and stabbing at the heart of non-scientific views of the world.

The latter term – ‘non-scientific’ – has often been used pejoratively but is in fact far from deserving of derision or, worse, pity. The precepts of organised religion encompass the most prominent non-scientific worldview but more than our tragic inability to imagine that these two magisteria could exist in anything but opposition to each other, the bigger misfortune lies with presuming science and religion are all there is. The non-scientific weltanschauung includes other realms, so to speak, especially encompassing beliefs that organised religion and its political economy hegemonise. Examples include the traditions of various tribal populations around the world, especially in North America, Latin America, Africa, Central and South Asia, and Australia.

There is an obvious difference between superstitious beliefs devised to suppress a group or population and the framework of tribal beliefs within which their knowledge of the world is enmeshed. It should be possible to delegitimise the former without also delegitimising the latter. Assuming the charitable view that some find it hard to discern this boundary, the simplest way to not trip over it is to acknowledge that most scientific and non-scientific beliefs can peacefully coexist in individual minds and hearts. And that undermining this remarkably human ability is yet another kind of proselytisation.

Obviously this is harder to realise in what we conceive as the day-to-day responsibilities of science communication, but that doesn’t mean we must put up with a lower bar for the sort of enlightenment we want India to stand for fifty or hundred years from now. Organising public eat-a-thons during a solar eclipse, apparently to dispel the superstitious view that consuming foods when the Sun has been so occluded is bad for health, is certainly not a mature view of the problem.

In fact, such heavy-handed attempts to drive home the point that “science is right” and “whatever else you think is wrong” are effects of a distal cause: a lack of sympathetic concern for the wellbeing of a people – which is also symptomatic of a half-formed, even egotistical, rationalism entirely content with its own welfare. Rescuing people from ideas that would enslave them could temporarily empower them but transplanting them to a world where knowledgeability rules like a tyrant, unconcerned with matters he cannot describe, is only more of the same by a different name.

B.R. Ambedkar and E.V. Ramaswamy Naicker, a.k.a. Periyar, wanted to dismantle organised religion because they argued that such oppressive complexes pervaded its entire body. Their ire was essentially directed against autocratic personal governance that expected obedience through faith. In India, unless you’re a scientist and/or have received a good education, and can read English well enough to access the popular and, if need be, the technical literature, science is also reduced to a system founded on received knowledge and ultimately faith.

There is a hegemony of science as well. Beyond the mythos of its own cosmology (to borrow Paul Feyerabend’s quirky turn of phrase in Against Method), there is also the matter of who controls knowledge production and utilisation. In Caliban and the Witch (1998), Sylvia Federici traces the role of the bourgeoisie in expelling beliefs in magic and witchcraft in preindustrial Europe only to prepare the worker’s body to accommodate the new rigours of labour under capitalism. She writes, “Eradicating these practices was a necessary condition for the capitalist rationalisation of work, since magic appeared as an illicit form of power and an instrument to obtain what one wanted without work, that is, a refusal of work in action. ‘Magic kills industry,’ lamented Francis Bacon…”.

To want to free another human from whatever shackles bind them is the sort of virtuous aspiration that is only weakened by momentary or superficial focus. In this setup, change – if such change is required at all costs – must be enabled from all sides, instead of simply a top-down reformatory jolt delivered by pictures of a bunch of people breaking their fast under an eclipsed Sun.

Effective science communication could change the basis on which people make behavioural decisions but to claim “all myths vanished” (as one science communicator I respect and admire put it) is disturbing. Perhaps in this one instance, the words were used in throwaway fashion, but how many people even recognise a need to moderate their support for science this way?

Myths, as narratives that harbour traditional knowledge and culturally unique perspectives on the natural universe, should not vanish but be preserved. A belief in the factuality of this or that story could become transformed by acknowledging that such stories are in fact myths and do not provide a rational basis for certain behavioural attitudes, especially ones that might serve to disempower — as well as that the use of the scientific method is a productive, maybe even gainful, way to discover the world.

But using science communication as a tool to dismantle myths, instead of tackling superstitious rituals that (to be lazily simplistic) suppress the acquisition of potentially liberating knowledge, is to create an opposition that precludes the peaceful coexistence of multiple knowledge systems. In this setting, science communication perpetuates the misguided view that science is the only useful way to acquire and organise our knowledge — which is both ahistorical and injudicious.

The alleged politicisation of science

“Don’t politicise X” has become the defence of choice for a class of scientists and public intellectuals in India whose class and caste privilege utterly blinds them to various inequities in the practice of science – as privilege is wont to do – and who labour with the presumption that these inequities, should they miraculously become aware of a few, don’t affect what new knowledge is produced and how it affects relationships predicated on a power imbalance in the wider society.

Consider a simple example: men and women are equally capable of being good scientists, but there aren’t many women the further down the academic pipeline you go because they have been driven out by their male colleagues’ and supervisors’ sexism and misogyny. As a result, a lot of modern scientific research simply collects the results of questions that men asked and questions that the same or other men answered. This problem impoverishes the scientific undertaking by depriving it of the insights and sensibilities of a significant section of society.

The way ahead from here should not be to ‘normalise’ things because the normal has come to mean the preservation of the status quo, in terms of protecting men and safeguarding their domains as temples of patriarchy; there can be progress only with near-constant struggle and pushback, and among non-male scientists as well as non-male workers, together with their male colleagues and peers, in all endeavours of modernity. It would in turn be impossible for such a historic movement to be non-political or apolitical.

A part of the problem is rooted in the demonisation of politics, at least the label itself. ‘To politicise’ has come to mean to infuse an endeavour with partisanship where there has thus far been harmony, with incentives that suppress intelligent decision-making with the simpler algorithms of populism. However, when such harmony and intelligence are products of oppression, they must go.

A male PI’s contention that women in the lab will “distract” men – as the Nobel laureate Tim Hunt said – or that they are unlikely to be available to run experiments owing to menstruation or pregnancy should prompt us to reexamine how labs are organised, the rights and freedoms of female lab-workers, and how the university frames the relationship between labour and research, and not have us considering if women should be allowed to work in labs at all. In a different context, many Indians on discussion forums and social media platforms have recently become fond of demanding that I, or anyone else, “shouldn’t politicise space”. But space has become interesting and lucrative only because it has been politicised.

“Politics,” according to Wikipedia, “is a set of activities associated with the governance of a country or an area.” In this regard, it should seem impossible for any endeavour, no matter how small or fleeting, to remain untouched by the influence of the politics of the people undertaking the endeavour. Caste-based and gender-based discrimination are obvious manifestations of this truism in Indian society; for another, consider the following snippet from an article I (first) published in July. It summarises the extent to which public policy influences the possible trajectories of scientific careers in India:

Consider a scientist from the developing world. Let’s say he is a male, English-speaking middle-class Brahmin so we can set aside the ceaseless discrimination the scientific community’s non-malenon-Hindu/non-upper-castenon-heterosexualIndian-language-speaking members face for the sake of our discussion. The picture has already been oversimplified. This scientist has access to some instruments, a few good labs, not many good mentors, irregular funding, not enough travel grants, subpar employment prospects, insufficient access to journals, lives in a polluted city with uneven public transport, rising costs of living, less water to spare and rising medical bills. If at this juncture we reinstate the less privileged Indian in this matrix, it becomes a near-chaotic picture of personal, social, economic and political problems. Even then, it is still only the substrate upon which international inequities – such as access to samples from other parts of India and the world, information published in journals that libraries can’t afford or exclusion from the editorial boards of scientific journals – will come to bear. Finally, there is the climate crisis and its discomfiting history.

For a less obvious example: Chandrayaan 2 has been widely touted as a technological as well as scientific mission. However, in the lead up to the mission’s launch on July 22 as well as after the unfortunate events of September 7, ISRO’s focus as well as that of the people and most journalists has remained on the mission’s technological aspects. In fact, ISRO chairman K. Sivan declared on September 22 that the mission had been a 98% success when its scientific phase had barely begun – that is, that Chandrayaan 2’s scientific mission constitutes only 2% of the whole thing.

As bizarre as this sounds, these proclamations are in line with ISRO’s relatively poor track record of executing sophisticated scientific missions. This should force us to confront the political economics of science administration in India – whereby those in power have become increasingly unwilling to fund non-applied research thanks to the rising influence of populist politics and its predilection for short-term gains. This is in addition to the relationships central and state-level funding agencies have with the receivers of their money, how such money is distributed between elite and non-elite institutes, and how nationalism shields ISRO from backlash as it centralises authority and further limits public outreach.

There are many other examples to illustrate that there is no such thing as the politicisation of X inasmuch as there is either the acknowledgment of this truth or its denial. But if you are still grasping for an out, there is one. There are two broad ways to divide the public perception of what politics is: the kind concerned with the principles by which we govern ourselves as a peaceful and productive society, and the kind concerned with maximising media exposure and perpetuating the inefficiencies of bureaucracy.

The influence of the former is inescapable by design and must be guided by reason and debate; the influence of the latter is regrettable and must be rejected for its small-mindedness at every opportunity. If one takes a charitable view of those fond of saying “don’t politicise X”, one would hope that they are speaking of politics of the second variety: the dirty realpolitik and its Machiavellian ambitions. But a less charitable, and an arguably more justified, view suggests that many scientists – in India at least – lack an appreciation of the politics of principles, a politics of social justice if you will.

Indeed, it is curious that many of them, together with many non-scientists as well, often prefer a more scientistic outlook, whereby the traditionally imagined ‘scientific’ disciplines and the knowledge these endeavours supply are considered to be incontestably superior to alternatives derived from, say, sociological studies or even paralogical systems like religion and traditional beliefs. To quote the philosopher of science Paul Feyerabend, “Neither science nor rationality are universal measures of excellence. They are particular traditions, unaware of their historical grounding.” (Source: Against Method, fourth ed., p. 223.)

But modern society considers politicisation to be a greater threat than scientism whereas historians of science brim with anecdotes about how the scientific endeavour remains constantly on the cusp of being weaponised in the absence of political safeguards that regulate its practice. The ongoing nationalist project to debase non-scientific research typifies this; to quote from an older post on this blog:

… the left has been painted as anti-fact and the right [as being guided] by righteous logic when in fact this is the result of the deeper dismissal of the validity of the social sciences and humanities, which have served throughout history to make facts right and workable in their various contexts. The right has appropriated the importance of quantitative measures – and that alone – and brandishes it like a torch. … And by attacking the validity of the social sciences and humanities, the left has effectively had the rug pulled out from under its feet, and the intellectual purpose of its existence delegitimised.

Not all of us may fully appreciate how we got here, but there is no question that we are indeed here – and that the way forward must be cognisant of, if not entirely critical of, the alleged politicisation of science and the political agendas of the perpetrators of this idea.

Some notes on empiricism, etc.

The Wire published a story about the ‘atoms of Acharya Kanad‘ (background here; tl;dr: Folks at a university in Gujarat claimed an ancient Indian sage had put forth the theory of atoms centuries before John Dalton showed up). The story in question was by a professor of philosophy at IISER, Mohali, and he makes a solid case (not unfamiliar to many of us) as to why Kanad, the sage, didn’t talk about atoms specifically because he was making a speculative statement under the Vaisheshika school of Hindu philosophy that he founded. What got me thinking were the last few lines of his piece, where he insists that empiricism is the foundation of modern science, and that something that doesn’t cater to it can’t be scientific. And you probably know what I’m going to say next. “String theory”, right?

No. Well, maybe. While string theory has become something of a fashionable example of non-empirical science, it isn’t the only example. It’s in fact a subset of a larger group of systems that don’t rely on empirical evidence to progress. These systems are called formal systems, or formal sciences, and they include logic, mathematics, information theory and linguistics. (String theory’s reliance on advanced mathematics makes it more formal than natural – as in the natural sciences.) And the dichotomous characterisation of formal and natural sciences (the latter including the social sciences) is superseded by a larger, more authoritative dichotomy*: between rationalism and empiricism. Rationalism prefers knowledge that has been deduced through logic and reasoning; empiricism prioritises knowledge that has been experienced. As a result, it shouldn’t be a surprise at all that debates about which side is right (insofar as it’s possible to be absolutely right – which I don’t think everwill happen) play out in the realm of science. And squarely within the realm of science, I’d like to use a recent example to provide some perspective.

Last week, scientists discovered that time crystals exist. I wrote a longish piece here tracing the origins and evolution of this exotic form of matter, and what it is that scientists have really discovered. Again, a tl;dr version: in 2012, Frank Wilczek and Alfred Shapere posited that a certain arrangement of atoms (a so-called ‘time crystal’) in their ground state could be in motion. This could sound pithy to you if you were unfamiliar with what ground state meant: absolute zero, the thermodynamic condition wherein an object has no energy whatsoever to do anything else but simply exist. So how could such a thing be in motion? The interesting thing here is that though Shapere-Wilczek’s original paper did not identify a natural scenario in which this could be made to happen, they were able to prove that it could happen formally. That is, they found that the mathematics of the physics underlying the phenomenon did not disallow the existence of time crystals (as they’d posited it).

It’s pertinent that Shapere and Wilczek turned out to be wrong. By late 2013, rigorous proofs had showed up in the scientific literature demonstrating that ground-state, or equilibrium, time crystals could not exist – but that non-equilibrium time crystals with their own unique properties could. The discovery made last week was of the latter kind. Shapere and Wilczek have both acknowledged that their math was wrong. But what I’m pointing at here is the conviction behind the claim that forms of matter called time crystals could exist, motivated by the fact that mathematics did not prohibit it. Yes, Shapere and Wilczek did have to modify their theory based on empirical evidence (indirectly, as it contributed to the rise of the first counter-arguments), but it’s undeniable that the original idea was born, and persisted with, simply through a process of discovery that did not involve sense-experience.

In the same vein, much of the disappointment experienced by many particle physicists today is because of a grating mismatch between formalism – in the form of theories of physics that predict as-yet undiscovered particles – and empiricism – the inability of the LHC to find these particles despite looking repeatedly and hard in the areas where the math says they should be. The physicists wouldn’t be disappointed if they thought empiricism was the be-all of modern science; they’d in fact have been rebuffed much earlier. For another example, this also applies to the idea of naturalness, an aesthetically (and more formally) enshrined idea that the forces of nature should have certain values, whereas in reality they don’t. As a result, physicists think something about their reality is broken instead of thinking something about their way of reasoning is broken. And so they’re sitting at an impasse, as if at the threshold of a higher-dimensional universe they may never be allowed to enter.

I think this is important in the study of the philosophy of science because if we’re able to keep in mind that humans are emotional and that our emotions have significant real-world consequences, we’d not only be better at understanding where knowledge comes from. We’d also become more sensitive to the various sources of knowledge (whether scientific, social, cultural or religious) and their unique domains of applicability, even if we’re pretty picky, and often silly, at the moment about how each of them ought to be treated (Related/recommended: Hilary Putnam’s way of thinking).

*I don’t like dichotomies. They’re too cut-and-dried a conceptualisation.

Dying in a finite universe

In his book Infinite In All Directions (2002), Freeman Dyson, one of the tallest intellectual giants of our times, attempts to rescue eschatology from the specious grip of religion and teleology with a mix of scientific reasoning and informed speculation. During this, when describing the big crunch, which is one way our universe could end, he moves smoothly from the rational track he has been sprinting on to a less exact but more pertinent and romantic description. In his words,

There is a great melancholy in the picture of a finite universe, its force spent, its days of passion over, counting the hours remaining before it slides into oblivion. What will our last poets sing, whoever they may be, human or alien, as they watch the stars crowding together and streaming faster and faster across the imploding sky? Perhaps in their final moments they will remember the words of our contemporary, Ivor Gurney, echoing down the eons from the springtime of our species:

The songs I had are withered
or vanished clean,
Yet there are bright tracks
Where I have been,
And there grow flowers
For others’ delight.
Think well, O singer,
Soon comes night.

I wonder if the universe will make this transition just as seamlessly, and the twilight of starstuff will prove to be just as pleasing, should it happen. Then again, to share Dyson’s conviction is to embrace naturalism for that’s all the beauty that we will see, and there is hope that it will be inexhaustible. Again, in his words and from the same book,

No matter how far we go into the future, there will always be new things happening, new information coming in, new worlds to explore, a constantly expanding domain of life, consciousness and memory.

A latent monadology: An extended revisitation of the mind-body problem

Image by Genis Carreras

In an earlier post, I’d spoken about a certain class of mind-body interfacing problems (the way I’d identified it): evolution being a continuous process, can psychological changes effected in a certain class of people identified solely by cultural practices “spill over” as modifications of evolutionary goals? There were some interesting comments on the post, too. You may read them here.

However, the doubt was only the latest in a series of others like it. My interest in the subject was born with a paper I’d read quite a while ago that discussed two methods either of which humankind could possibly use to recreate the human brain as a machine. The first method, rather complexly laid down, was nothing but the ubiquitous recourse called reverse-engineering. Study the brain, understand what it’s made of, reverse all known cause-effect relationships associated with the organ, then attempt to recreate the cause using the effect in a laboratory with suitable materials to replace the original constituents.

The second method was much more interesting (this bias could explain the choice of words in the previous paragraph). Essentially, it described the construction of a machine that could perform all the known functions of the brain. Then, this machine would have to be subjected to a learning process, through which it would acquire new skills while it retained and used the skills it’s already been endowed with. After some time, if the learnt skills, so chosen to reflect real human skills, are deployed by the machine to recreate human endeavor, then the machine is the brain.

Why I like this method better than the reverse-engineered brain is because it takes into account the ability to learn as a function of the brain, resulting in a more dynamic product. The notion of the brain as a static body is definitively meaningless as, axiomatically, conceiving of it as a really powerful processor stops short of such Leibnizian monads as awareness and imagination. While these two “entities” evade comprehension, subtracting the ability to, yes, somehow recreate them doesn’t yield a convincing brain as it is. And this is where I believe the mind-body problem finds solution. For the sake of argument, let’s discuss the issue differentially.

Spherical waves coming from a point source. The solution of the initial-value problem for the wave equation in three space dimensions can be obtained from the solution for a spherical wave through the use of partial differential equations. (Image by Oleg Alexandrov on Wikimedia, including MATLAB source code.)

Hold as constant: Awareness
Hold as variable: Imagination

The brain is aware, has been aware, must be aware in the future. It is aware of the body, of the universe, of itself. In order to be able to imagine, therefore, it must concurrently trigger, receive, and manipulate different memorial stimuli to construct different situations, analyze them, and arrive at a conclusion about different operational possibilities in each situation. Note: this process is predicated on the inability of the brain to birth entirely original ideas, an extension of the fact that a sleeping person cannot be dreaming of something he has not interacted with in some way.

Hold as constant: Imagination
Hold as variable: Awareness

At this point, I need only prove that the brain can arrive at an awareness of itself, the body, and the universe, through a series of imaginative constructs, in order to hold my axiom as such. So, I’m going to assume that awareness came before imagination did. This leaves open the possibility that with some awareness, the human mind is able to come up with new ways to parse future stimuli, thereby facilitating understanding and increasing the sort of awareness of everything that better suits one’s needs and environment.

Now, let’s talk about the process of learning and how it sits with awareness, imagination, and consciousness, too. This is where I’d like to introduce the metaphor called Leibniz’s gap. In 1714, Gottfried Leibniz’s ‘Principes de la Nature et de la Grace fondés en raison‘ was published in the Netherlands. In the work, which would form the basis of modern analytic philosophy, the philosopher-mathematician argues that there can be no physical processes that can be recorded or tracked in any way that would point to corresponding changes in psychological processes.

… supposing that there were a mechanism so constructed as to think, feel and have perception, we might enter it as into a mill. And this granted, we should only find on visiting it, pieces which push one against another, but never anything by which to explain a perception. This must be sought, therefore, in the simple substance, and not in the composite or in the machine.

If any technique was found that could span the distance between these two concepts – the physical and the psychological – then Leibniz says the technique will effectively bridge Leibniz’s gap: the symbolic distance between the mind and the body.

Now it must be remembered that the German was one of the three greatest, and most fundamentalist, rationalists of the 17th century: the other two were Rene Descartes and Baruch Spinoza (L-D-S). More specifically: All three believed that reality was composed fully of phenomena that could be explained by applying principles of logic to a priori, or fundamental, knowledge, subsequently discarding empirical evidence. If you think about it, this approach is flawless: if the basis of a hypothesis is logical, and if all the processes of development and experimentation on it are founded in logic, then the conclusion must also be logical.

(L to R) Gottfried Leibniz, Baruch Spinoza, and Rene Descartes

However, where this model does fall short is in describing an anomalous phenomenon that is demonstrably logical but otherwise inexplicable in terms of the dominant logical framework. This is akin to Thomas Kuhn’s philosophy of science: a revolution is necessitated when enough anomalies accumulate that defy the reign of an existing paradigm, but until then, the paradigm will deny the inclusion of any new relationships between existing bits of data that don’t conform to its principles.

When studying the brain (and when trying to recreate it in a lab), Leibniz’s gap, as understood by L-D-S, cannot be applied for various reasons. First: the rationalist approach doesn’t work because, while we’re seeking logical conclusions that evolve from logical starts, we’re in a good position to easily disregard the phenomenon called emergence that is prevalent in all simple systems that have high multiplicity. In fact, ironically, the L-D-S approach might be more suited for grounding empirical observations in logical formulae because it is only then that we run no risk of avoiding emergent paradigms.

“Some dynamical systems are chaotic everywhere, but in many cases chaotic behavior is found only in a subset of phase space. The cases of most interest arise when the chaotic behavior takes place on an attractor, since then a large set of initial conditions will lead to orbits that converge to this chaotic region.” – Wikipedia

Second: It is important to not disregard that humans do not know much about the brain. As elucidated in the less favored of the two-methods I’ve described above, were we to reverse-engineer the brain, we can still only make the new-brain do what we already know that it already does. The L-D-S approach takes complete knowledge of the brain for granted, and works post hoc ergo propter hoc (“correlation equals causation”) to explain it.

[youtube http://www.youtube.com/watch?v=MygelNl8fy4?rel=0]

Therefore, in order to understand the brain outside the ambit of rationalism (but still definitely within the ambit of empiricism), introspection need not be the only way. We don’t always have to scrutinize our thoughts to understand how we assimilated them in the first place, and then move on from there, when we can think of the brain itself as the organ bridging Leibniz’s gap. At this juncture, I’d like to reintroduce the importance of learning as a function of the brain.

To think of the brain as residing at a nexus, the most helpful logical frameworks are the computational theory of the mind (CTM) and the Copenhagen interpretation of quantum mechanics (QM).

xkcd #45 (depicting the Copenhagen interpretation)

In the CTM-framework, the brain is a processor, and the mind is the program that it’s running. Accordingly, the organ works on a set of logical inputs, each of which is necessarily deterministic and non-semantic; the output, by extension, is the consequence of an algorithm, and each step of the algorithm is a mental state. These mental states are thought to be more occurrent than dispositional, i.e., more tractable and measurable than the psychological emergence that they effect. This is the break from Leibniz’s gap that I was looking for.

Because the inputs are non-semantic, i.e., interpreted with no regard for what they mean, it doesn’t mean the brain is incapable of processing meaning or conceiving of it in any other way in the CTM-framework. The solution is a technical notion called formalization, which the Stanford Encyclopedia of Philosophy describes thus:

… formalization shows us how semantic properties of symbols can (sometimes) be encoded in syntactically-based derivation rules, allowing for the possibility of inferences that respect semantic value to be carried out in a fashion that is sensitive only to the syntax, and bypassing the need for the reasoner to have employ semantic intuitions. In short, formalization shows us how to tie semantics to syntax.

A corresponding theory of networks that goes with such a philosophy of the brain is connectionism. It was developed by Walter Pitts and Warren McCulloch in 1943, and subsequently popularized by Frank Rosenblatt (in his 1957 conceptualization of the Perceptron, a simplest feedforward neural network), and James McClelland and David Rumelhart (‘Learning the past tenses of English verbs: Implicit rules or par­allel distributed processing’, In B. MacWhinney (Ed.), Mechanisms of Language Acquisition (pp. 194-248). Mah­wah, NJ: Erlbaum) in 1987.

(L to R) Walter Pitts (L-top), Warren McCulloch (L-bottom), David Rumelhart, and James McClelland

As described, the L-D-S rationalist contention was that fundamental entities, or monads or entelechies, couldn’t be looked for in terms of physiological changes in brain tissue but in terms of psychological manifestations. The CTM, while it didn’t set out to contest this, does provide a tensor in which the inputs and outputs are correlated consistently through an algorithm with a neural network for an architecture and a Turing/Church machine for an algorithmic process. Moreover, this framework’s insistence on occurrent processes is not the defier of Leibniz: the occurrence is presented as antithetical to the dispositional.

Jerry Fodor

The defier of Leibniz is the CTM itself: if all of the brain’s workings can be elucidated in terms of an algorithm, inputs, a formalization module, and outputs, then there is no necessity to suppress any thoughts to the purely-introspectionist level (The domain of CTM, interestingly, ranges all the way from the infraconscious to the set of all modular mental processes; global mental processes, as described by Jerry Fodor in 2000, are excluded, however).

Where does quantum mechanics (QM) come in, then? Good question. The brain is a processor. The mind is a program. The architecture is a neural network. The process is that of a Turing machine. But how is the information between received and transmitted? Since we were speaking of QM, more specifically the Copenhagen interpretation of it, I suppose it’s obvious that I’m talking about electrons and electronic and electrochemical signals being transmitted through sensory, motor, and interneurons. While we’re assuming that the brain is definable by a specific processual framework, we still don’t know if the interaction between the algorithm and the information is classical or quantum.

While the classical outlook is more favorable because almost all other parts of the body are fully understand in terms of classical biology, there could be quantum mechanical forces at work in the brain because – as I’ve said before – we’re in no way to confirm or deny if it’s purely classical or purely non-classical operationally. However, assuming that QM is at work, then associated aspects of the mind, such as awareness, consciousness, and imagination, can be described by quantum mechanical notions such as the wavefunction-collapse and Heisenberg’s uncertainty principle – more specifically, by strong and weak observations on quantum systems.

The wavefunction can be understood as an avatar of the state-function in the context of QM. However, while the state-function can be constantly observable in the classical sense, the wavefunction, when subjected to an observation, collapses. When this happens, what was earlier a superposition of multiple eigenstates, metaphorical to physical realities, becomes resolved, in a manner of speaking, into one. This counter-intuitive principle was best summarized by Erwin Schrodinger in 1935 as a thought experiment titled…

[youtube http://www.youtube.com/watch?v=IOYyCHGWJq4?rel=0]

This aspect of observation, as is succinctly explained in the video, is what forces nature’s hand. Now, we pull in Werner Heisenberg and his notoriously annoying principle of uncertainty: if either of two conjugate parameters of a particle is measured, the value of the other parameter is altered. However, when Heisenberg formulated the principle heuristically in 1927, he also thankfully formulated a limit of uncertainty. If a measurement could be performed within the minuscule leeway offered by the constant limit, then the values of the conjugate parameters could be measured simultaneously without any instantaneous alterations. Such a measurement is called a “weak” measurement.

Now, in the brain, if our ability to imagine could be ascribed – figuratively, at least – to our ability to “weakly” measure the properties of a quantum system via its wavefunction, then our brain would be able to comprehend different information-states and eventually arrive at one to act upon. By extension, I may not be implying that our brain could be capable of force-collapsing a wavefunction into a particular state… but what if I am? After all, the CTM does require inputs to be deterministic.

How hard is it to freely commit to a causal chain?

By moving upward from the infraconscious domain of applicability of the CTM to the more complex cognitive functions, we are constantly teaching ourselves how to perform different kinds of tasks. By inculcating a vast and intricately interconnected network of simple memories and meanings, we are engendering the emergence of complexity and complex systems. In this teaching process, we also inculcate the notion of free-will, which is simply a heady combination of traditionalism and rationalism.

While we could be, with the utmost conviction, dreaming up nonsensical images in our heads, those images could just as easily be the result of parsing different memories and meanings (that we already know), simulating them, “weakly” observing them, forcing successive collapses into reality according to our traditional preferences and current environmental stimuli, and then storing them as more memories accompanied by more semantic connotations.