Retrospective: The Wire Science in 2019

At the start of 2019, The Wire Science decided to focus more on issues of science and society, and this is reflected in the year-end list of our best stories (in terms of traffic and engagement; listed below). Most of our hits don’t belong to this genre, but quite a few do – enough for us to believe that these issues aren’t as esoteric as they appear to be in day-to-day conversations.

Science communication is becoming more important in India and more people are taking to it as a career. As a result, the visibility of science stories in the press has increased. Scientists are also using Facebook and Twitter to voice their views, whether on the news of the day or to engage in debates about their field of work. If you are an English-speaker with access to the internet and a smartphone, you are quite unlikely to have missed these conversations.

Most popular articles of 2019

The Sciences

  1. Poor Albert Einstein, His Wrong Theories and Post-Truths
  2. What Is Quantum Biology?
  3. If Scientists Don’t Speak out Today, Who Will Be Left to Defend Science Tomorrow?
  4. Why Scientists Are Confused About How Fast the Universe Is Expanding
  5. CSIR Lab? Work on Applied Research or Make do With Small Share of Funds

Health

  1. Why Everyone Around You Seems to Be Getting Cancer
  2. MCI Finally Updates MBBS Curriculum to Include Disability Rights and Dignity
  3. PM Modi is Worried About Population Explosion, a Problem Set to Go Away in 2021
  4. Bihar: Who is Responsible for the Death of 100 Children?
  5. What’s NEXT for the NMC Bill? Confusion.

Environment

  1. Extreme Events in the Himalayan Region: Are We Prepared for the Big One?
  2. A Twist in the Tale: Electric Vehicles Will Worsen India’s Pollution Crisis
  3. How Tamil Nadu Is Fighting in the First Attempt to Save a Sinking Island
  4. Why NGT Thinks Allahabad Is on the Verge of an Epidemic After Kumbh Mela
  5. But Why Is the Cauvery Calling?

Space

  1. NASA Briefly Stopped Working With ISRO on One Count After ASAT Test
  2. Senior ISRO Scientist Criticises Sivan’s Approach After Moon Mission Setback
  3. ISRO Doesn’t Have a Satisfactory Answer to Why It Wants to Put Indians in Space
  4. Chandrayaan 2 in Limbo as ISRO Loses Contact With Lander, History on Hold
  5. ISRO Delays Chandrayaan 2 Launch Again – But How Is Beresheet Involved?

Education

  1. NCERT to Drop Chapters on Caste Struggles, Colonialism From Class 9 History Book
  2. JNU: The Story of the Fall of a Great University
  3. Dear Students, Here’s How You Could Have Reacted to Modi’s Mockery of Dyslexia
  4. Can a Student’s Suicide Note Make Us Rethink the IIT Dream?
  5. NET Now Mandatory for Scheduled Caste Students to Avail Research Scholarship

Our choice

The state has become more involved with the R&D establishment, although these engagements have been frequently controversial. In such a time, with so many public institutions teetering on the brink, it is important we ensure science doesn’t become passively pressed into legitimising actions of the state but rather maintains a mutually beneficial relationship that also strengthens the democracy. It is not the prerogative of scientists alone to do this; we must all get involved because the outcomes of science belong to all of us.

To this end, we must critique science, scientists, their practices, our teachers and research administrators, forest officers, conservationists and environmental activists, doctors, nurses, surgeons and other staff, members of the medical industry, spaceflight engineers and space lawyers, rules that control prices and access, examinations and examiners, and so forth. We must question the actions and policies of everyone involved in this knowledge economy. Ultimately, we must ask if our own aspirations are in line with what we as a people expect of the world around us, and science is a part of that.

It would be remiss to not mention the commendable job some other publications have been doing vis-à-vis covering science in India, including The Hindu, The Telegraph, The Print, Mongabay, Indian Express, Dinamalar, etc. Their efforts have given us the opportunity to disengage once in a while from the more important events of the day to focus on stories that might otherwise have never been read.

This year, The Wire Science published stories that interrogated what duties academic and research institutions have towards the people whose tax-money funds them, that discussed more inclusivity and transparency because only a more diverse group of practitioners can ask more diverse questions, and that examined how, though science offers a useful way to make sense of the natural order, it doesn’t automatically justify itself nor is it entitled to the moral higher-ground.

The overarching idea was to ask questions about the natural universe without forgetting that the process of answering those questions is embedded in a wider social context that both supports and informs scientists’ practices and beliefs. There is no science without the scientists that practice it – yet most of us are not prepared to consider that science is as messy as every other human endeavour and isn’t the single-minded pursuit of truth its exponents often say it is.

In these fraught times, we shouldn’t forget that science guided only by the light of logic produces many of the reasons of state. The simplest way science communication can participate in this exercise, and not just be a mute spectator, is by injecting the scientist back into the science. This isn’t an abdication of the ideal of objectivity, even though objectivity itself has been outmoded by the advent of the irrational, majoritarian and xenophobic politics of nationalism. Instead, it is a reaffirmation that you can take science out of politics but that you can’t take politics out of science.

At the same time, the stories that emerge from this premise aren’t entirely immune to the incremental nature of scientific progress. We often have to march in step with the gentle rate at which scientists invent and/or discover things, and the similar pace at which the improvements among them are available to everyone everywhere. This fact offers one downside and one up: it is harder for our output to be noticed in the din of the news, but by staying alert to how little pieces of information from diverse lines of inquiry – both scientific and otherwise, especially from social science – can team up with significant consequence, we are better able to anticipate how stories will evolve and affect the world around them.

We hope you will continue to read, share and comment on the content published by The Wire Science. We have also been publicising articles from other publications and by bloggers we found interesting and have been reproducing (if available) on our website and on our social media platforms in an effort to create an appreciation of science stories beyond the ones we have been able to afford.

On this note: please also donate a sum comfortable to you to support our work. Even an amount as little as Rs 200 will go a long way.

The Wire
December 26, 2019

The ‘could’ve, should’ve, would’ve’ of R&D

ISRO’s Moon rover, which will move around the lunar surface come September (if all goes well), will live and and die in a span of 14 days because that’s how long the lithium-ion cells it’s equipped with can survive the -160º C-nights at the Moon’s south pole, among other reasons. This here illustrates an easily understood connection between fundamental research and its apparent uselessness on the one hand and applied science and its apparent superiority on the other.

Neither position is entirely and absolutely correct, of course, but this hierarchy of priorities is very real, at least in India, because it closely parallels the practices of the populist politics that privileges short-term gains over benefits in the longer run.

In this scenario, it may not seem worthwhile to fund a solid-state physicist who has, based on detailed physicochemical analyses, fashioned for example a new carbon-based material that can store lithium ions in its atomic lattice and has better thermal characteristics than graphite. It may seem even less worthwhile to fund researchers probing the seemingly obscure electronic properties of materials like graphene and silicene, writing papers steeped in abstract math and unable to propose a single viable application for the near-future.

But give it twenty years and a measure of success in the otherwise-unpredictable translational research part of the R&D pipeline, and suddenly, you’re holding the batteries that’re supposed to be installed on a Moon rover and need to determine how many instruments you can pack on there to ensure the whole ensemble is powered for the whole time they’ll need to conduct each of their tests. Just as suddenly, you’re also thinking about what else you could’ve installed on the little machine so it could’ve lived longer, and what else it could’ve potentially discovered in this bonus time.

Maybe you’re just happy, knowing how things have been for research in the country in the last two decades and based on the spaceflight organisation’s goals (a part of which the government has a say in), that the batteries can even last for two weeks. Maybe you’re just sad because you think it could’ve been better. But one way or another, it’s an inescapably tangible reminder that investments in research determine what you’re going to get to take out of the technology in the future. Put differently: it’s ridiculous to expect to know which water molecules are going to end up in which plant, but unless you water the soil, the plants are going to start wilting.

Chandrayaan 2 itself may be lined up to be a great success but who knows, there could come along a future mission where a groundbreaking instrument developed by an inspired student at a state university has to be left out of an interplanetary satellite because we didn’t have access to the right low-density, high-strength materials. Or where a bunch of Indians are on a decade-long interstellar voyage and the captain realises crew morale is dangerously low because the government couldn’t give two whits about social psychology.

TIFR’s superconductor discovery: Where are the reports?

Featured image: The Meissner effect: a magnet levitating above a superconductor. Credit: Mai-Linh Doan/Wikimedia Commons, CC BY-SA 3.0.

On December 2, physicists from the Tata Institute of Fundamental Research (TIFR) announced an exciting discovery: that the metal bismuth becomes a superconductor at a higher temperature than predicted by a popular theory. Granted the theory has had its fair share of exceptions, the research community is excited about this finding because of the unique opportunities it presents in terms of learning more, doing more. But yeah, even without the nuance, the following is true: that TIFR physicists have discovered a new form of superconductivity, in the metal bismuth. I say this as such because not one news outlet in India, apart from The Wire, reported the discovery, and it’s difficult to say it’s because the topic was too hard to understand.

This was, and is, just odd. The mainstream as well as non-mainstream media in the country are usually quick to pick up on the slightest shred of legitimate scientific work and report it widely. Heck, many news organisations are also eager to report on illegitimate research – such as those on finding gold in cow urine. After the embargo on the journal paper lifted at 0030 hrs, I (the author of the article on The Wire) remained awake to check if the story had turned out okay – specifically, to check if anyone had any immediate complaints about its contents (there were two tweets about the headline and they were quickly dealt with). But then I ended up staying awake until 4 am because, as much as I looked on Google News and on other news websites, I couldn’t find anyone else who had written about it.

Journal embargoes aren’t new, nor is it the case that journalists in India haven’t signed up to receive embargoed material. For example, the multiple water-on-Mars announcements and the two monumental gravitational-waves discoveries were all announced via papers in the journal Science, and were covered by The Hindu, The Telegraph, Times of India, Indian Express, etc. And Science also published the TIFR paper. Moreover, the TIFR paper wasn’t suppressed or buried in the embargoed press releases that the press team at Science sends out to journalists a few days before the embargo lifts. Third, the significance of the finding was evident from the start; these were the first two lines of the embargoed press release:

Scientists from India report that pure Bismuth – a semimetal with a very low number of electrons per given volume, or carrier concentration – is superconducting at ultralow temperatures. The observation makes Bismuth one of the two lowest carrier density superconductors to date.

All a journalist had to do was get in touch with Srinivasan Ramakrishnan, the lead author of the paper as well as the corresponding author, to get a better idea of the discovery’s significance. From my article on The Wire:

“People have been searching for superconductivity in bismuth for 50 years,” Srinivasan Ramakrishnan, the leader of the TIFR group, told The Wire. “The last work done in bismuth found that it is not superconducting down to 0.01 kelvin. This was done 20 years ago and people gave up.”

So, I’m very curious to know what happened. And since no outlets apart from The Wire have picked the story up, we circle back to the question of media coverage for science news in India. As my editor pointed out, the major publications are mostly interested in stuff like an ISRO launch, a nuclear reactor going critical or an encephalitis outbreak going berserker when it comes to covering science, and even then the science of the story itself is muted while the overlying policy issues are played up. This is not to say the policies are receiving undeserving coverage – they’re important, too – but only that the underlying science, which informs policy in crucial ways, isn’t coming through.

And over time this disregard blinds us to an entire layer of enterprise that involves hundreds of thousands of our most educated people and close to Rs 2 lakh crore of our national expenditure (total R&D, 2013).

On the need for the India-based Neutrino Observatory

A prototype of the ICAL detector at TIFR. Credit: TIFR
A prototype of the ICAL detector at TIFR. Credit: TIFR

“I bet @1amnerd disagrees with this” was how Kapil Subramanian’s piece in The Hindu today was pointed out to me on Twitter. Titled ‘India must look beyond neutrinos’, the piece examines if India should be a “global leader in science” and if investing in a neutrino detector is the way to do it. A few days ago, former Indian President Abdul Kalam and his advisor Srijan Pal Singh had penned a piece, also in The Hindu, about how India could do with the neutrino detector planned to be constructed in Theni, Tamil Nadu. While I wrote a piece along the lines of Kalam’s (again, in The Hindu) in March 2014, I must admit I have since become less convinced by an urgent need for the detector entirely due to administrative reasons. There are some parts of Subramanian’s piece that I disagree with nonetheless, and in fact I admit I have doubts about my commitment to whatever factions are involved in this debate. Here’s the break-down.

To raise the first question [Why must India gain leadership in science?] is to risk being accused of Luddite blasphemy.

This tag about “leadership in science” must be dropped from the INO debates. It is corrupting how we are seeing this problem.

How can you even question the importance of science we’ll be asked; if pressed, statistics and rankings of the poor state of Indian science will be quoted. We’ll be told that scientific research will lead to economic growth; comparisons with the West and China will be drawn. The odd spin-off story about the National Aeronautics and Space Administration (NASA) or the Indian Space Research Organisation will be quoted to demonstrate how Big Science changes lives and impacts the economy. Dr. Kalam and Mr. Singh promise applications in non-proliferation and counter terrorism, mineral and oil exploration, as well as in earthquake detection. But there has been a long history of the impact of spin-offs being exaggerated; an article in the journal of the Federation of American Scientists (a body whose board of sponsors included over 60 Nobel laureates) calculated that NASA produced only $5 million of spin-offs for $65 billion invested over eight years.

This is wrong. The document in question says $55 billion was invested between 1978 and 1986 and the return via spin-offs was $5 billion, not $5 million. Second, the document itself states that as long as it considered only the R&D spending between 1978 and 1986, the ROI was 4x ($10 billion for $2.5 billion), but when it considered the total expenditure, the ROI dropped to 0.1x ($5 billion for $55 billion). Here, government ROI should be calculated differently when compared to ROI on private investments because why would anyone consider overall expenditure that includes capital expenditure, operational expenses, legal fees and HR? Even as it is impossible to have an R&D facility without those expenses, NASA doesn’t have a product to sell either.

Update: The Hindu has since corrected the figure from $5 million to $5 billion.

If such is the low return from projects which involve high levels of engineering design, can spin-offs form a plausible rationale for what is largely a pure science project? The patchy record of Indian Big Science in delivering on core promises (let alone spin-offs) make it difficult to accept that INO will deliver any significant real-world utility despite claims. It was not for nothing that the highly regarded Science magazine termed the project “India’s costly neutrino gamble”.

That sentence there in bold – that’s probably going to keep us from doing anything at all, leaving us to stick perpetually with only the things we’re good at. In fact, we’re concerned about deliverables, let’s spend a little more and build a strongly accountable system instead of calling for less spending and more efficiency. And while it wasn’t for nothing that Science magazine called it a costly gamble, it also stated, “As India’s most expensive basic science facility ever, INO will have a profound impact on the nation’s science. Its opening in 2020 would mark a homecoming for India’s particle physicists, who over the last quarter-century dispersed overseas as they waited for India to build a premier laboratory. And the INO team is laying plans to propel the facility beyond neutrinos into other areas, such as the hunt for dark matter, in which a subterranean setting is critical.”

Even if it delivers useful technology, the argument that research spurs economic growth is highly suspect. As David Edgerton has shown, contrary to popular perception, there is actually a negative correlation between national spending on R&D and national GDP growth rates with few exceptions. This correlation does not, of course, suggest that research is a drag on the economy; merely that rich countries (which tend to grow slowly) spend more on science and technology.

Rich countries spend more – but India is spending too little. Second, the book addressed UK’s research and productive capacity – India’s capacities are different. Third, David Edgerton wrote that in a book titled Warfare State: Britain, 1920-1970, addressing research and manufacturing capacities during the Second World War and the Cold War that followed. These were periods of building and then rebuilding, and were obviously skewed against heavy investments in research (apart from in disciplines relevant to defense and security). Second, Edgerton’s contention is centered on R&D spending beyond a point and its impact on economic growth because, at the time, Britain had one of the highest state expenditures on R&D in the European region yet one of the lowest growth rates. His call was to strike a balance between research and manufacturing – theory and prototyping – instead of over-researching. As he writes of Sir Solly Zuckerman, Chairman of the Central Advisory Council for Science and Technology (in 1967), in the same book,

[He] argued, implicitly but clearly enough, that the British government, and British industry, were spending too much on R&D in absolute and relative terms. It noted that ‘a high level of R&D is far from being the main key to successful innovation’, and that ‘Capital investment in new productive capacity has not … been matching our outlays in R&D’.

In India, the problem is on both ends of this pipe: insufficient and inefficient research on the one hand due to a lack of funds among various complaints and insufficient productive capacity, as well as incentive, on the other for realizing research. Finally, if anyone expects one big science experiment to contribute tremendously to India’s economic growth, then they can also expect Chennai to have snowfall in May. What must happen is that initiatives like the INO must be (conditionally) encouraged and funded before we concern ourselves with over-researching.

Thus, national investment in science and technology is more a result of growing richer as an economy than a cause of it. Investment in research is an inefficient means of economic growth in middle income countries such as India where cheaper options for economic development are plentiful. Every country gets most of its technology from R&D done by others. The East Asian Tigers, for example, benefitted from reverse engineering Western technologies before building their own research capabilities. Technologies have always been mobile in their economic impact; this is more so today when Apple’s research in California creates more jobs in China than in the United States. Most jobs in our own booming IT sector arose from technological developments in the U.S. rather than Indian invention.

Subramanian makes a good point: that poor countries can benefit from rich countries. Apple gets almost all – if not all – of its manufacturing done in China – that’s thousands of jobs created in China and, implicitly, lost in the USA. But this argument overlooks what Apple has done to California, where the technology giant pays taxes, where it creates massive investment opportunities, where it bedecks an entire valley renowned for its creative and remunerative potential. In fact, it wouldn’t be remiss to say the digital revolution that the companies of Silicon Valley were at the forefront of were largely responsible for catapulting the United States as a global superpower after the Cold War.

It may have suited Subramanian to instead have quoted the example of France trying to recreate a Silicon Valley of its own in Grenoble, and failing, illustrating how countries need to stick to doing what they’re best at at least for the moment. (First) Then again, this presupposes India will not be good at managing a Big Science experiment – and I wouldn’t dispute the skepticism much because we’re all aware how much of a bully the DAE can be. (Second) At the same time, we must also remember that we have very few institutions that do world-class work and are at the same time free from bureaucratic interventions. The first, and only, institution that comes to mind is ISRO, and it is today poised to reach for blue sky research only after having appeased the central government for over five decades. One reason for its enviable status is that it comes under the Department of Space. These two departments – Space and Atomic Energy – are more autonomous because of the histories of their establishment, and I believe that in the near future, no large-scale scientific program can come up and hope to be well-managed that’s not under the purview of these two departments.

(Third) There is also the question of initiative. My knowledge at this point is fuzzy; nonetheless: I believe the government is not going to come up with research laboratories and R&D opportunities of its own (unless the outcomes are tied to defense purposes). I would have sided with Subramanian had it been the government’s plan to come up with a $224 million neutrino detector at the end of a typically non-consultative process. But that’s not what happened – the initiative arose at the TIFR, Mumbai, and MatScience, Chennai. Even though they’re both government-funded, the idea of the INO didn’t stem from some hypothetical need to host a large experiment in India but by physicists to complement a strong theoretical research community in the country.

Is the INO the best way forward for Indian science?

One may cite better uses (sanitation, roads, schools and hospitals) for the $224 million that is to be spent on the most expensive research facility in Indian history; but that argument is unfashionable (and some may say unfair). However, even if one concedes the importance of India pursuing global leadership in scientific research, one may question if investing in the INO is the best way to do so.

Allocation of resources

Like many other countries, India has long had a skewed approach to allocating its research budget to disciplines, institutions and individual researchers; given limited resources, this has a larger negative impact in India than in the rich countries. Of the Central government’s total research spend in 2009-10, almost a third went to the Defence Research and Development Organisation, 15 per cent to the Department of Space, 14 per cent to the Department of Atomic Energy (which is now in-charge of the INO project) and 11 per cent to the Indian Council of Agricultural Research. The Department of Science, which covers most other scientific disciplines, accounted for barely 8 per cent of the Central government’s total R&D spending. Barely 4 per cent of India’s total R&D spending took place in the higher education sector which accounts for a large share of science and technology personnel in the country. Much of this meagre spending took place in elite institutes such as the IITs and IISc., leaving little for our universities where vast numbers of S&T professors and research scholars work.

Spending on Big Science has thus been at the cost of a vibrant culture of research at our universities. Given its not so insubstantial investment in research, India punches well below its weight in research output. This raises serious questions as to whether our hierarchical model of allocating resource to research has paid off.

Subramanian’s right, but argues from the angle that government spending on science will remain the same and that what’s spent should be split among all disciplines. I’m saying that spending should increase for all fields, and developments in one field should not be held back by the slow rate of development in others, that we should ensure ambitious science experiments should go forward alongside increased funding for other research. In fact, my overall dispute with Subramanian’s opinions are centered on the concession that there are two broad models of economic development involved in this debate – whether a country should only do what it can be truly competitive in, or whether it should do all it can to be self-sufficient and protect itself. I believe Kapil Subramanian’s rooting for the former idea and I, for the latter.

It may be argued that to gain leadership in science, money is best spent in supporting a wide range of research at many institutions, rather than investing an amount equivalent to nearly 16 per cent of the 2015-16 Science Ministry budget in a very expensive facility like INO designed to benefit a relatively small number of scientists working in a highly specialised and esoteric field.

We need to invest in nurturing research at the still-struggling new IITs (and IISERs) as well as increase support to the old IITs (and IISc). More generally, we need to allocate public resources for research more fairly (though perhaps not entirely equitably) to the specialised bodies and educational institutions, including the universities. Besides raising the overall quality and quantity of our research output, this will allow students to experience being taught by leaders in their discipline who would not only inspire the young to pursue a career in research, but also encourage the small but growing trend of the best and the brightest staying back in India for their doctorate rather than migrating overseas.

Unquestionably true. We need to increase funding for the IITs, IISERs, and the wealth of other centrally funded institutions in our midst, as well as pay our researchers and technicians more. However, what Subramanian’s piece overlooks is that particle physics research, definitely one esoteric discipline of scientific research in that its contribution to our daily lives is nowhere as immediate as that of genetics or chemical engineering, in the country has managed to become somewhat more efficient, more organized and more collaborative than many other disciplines sharing its complexity. If managed well, the INO project can lead by example. The Science Ministry may have been screwing with its funding priorities since 1991 but that doesn’t mean all that’s come of it has been misguided.

Finally, like I wrote in the beginning: my support for the INO was once at its peak, then declined, and now stagnates at a plateau. If you’re interested: I’m meeting some physicists who are working on the INO on Monday (June 29), and will try to get them to open up – on the demands made in Subramanian’s piece, on the legal issues surrounding the project, and they themselves have to say about government support.

(Many thanks to Anuj Srivas for helping bounce around ideas.)

R&D in China and India

“A great deal of the debate over globalization of knowledge economies has focused on China and India. One reason has been their rapid, sustained economic growth. The Chinese economy has averaged a growth rate of 9-10 percent for nearly two decades, and now ranks among the world’s largest economies. India, too, has grown steadily. After years of plodding along at an average annual increase in its gross domestic product (GDP) of 3.5 percent, India has expanded by 6 percent per annum since 1980, and more than 7 percent since 1994 (Wilson and Purushothaman, 2003). Both countries are expected to maintain their dynamism, at least for the near future.”

– Gereffi et al, ‘Getting the Numbers Right: International Engineering Education in the United States, China and India’, Journal of Engineering Education, January 2008

A June 16 paper in Proceedings of the National Academy of Sciences, titled ‘China’s Rise as a Major Contributor to Science and Technology’, analyses the academic and research environment in China over the last decade or so, and discusses the factors involved in the country’s increasing fecundity in recent years. It concludes that four factors have played an important role in this process:

  1. Large human capital base
  2. A labor market favoring academic meritocracy
  3. A large diaspora of Chinese-origin scientists
  4. A centralized government willing to invest in science

A simple metric they cite to make their point is the publication trends by country. Between 2000 and 2010, for example, the number of science and engineering papers published by China has increased by 470%. The next highest climb was for India, by 234%.

Click on the image for an interactive chart.
Click on the image for an interactive chart.

“The cheaters don’t have to worry they will someday be caught and punished.”

This is a quantitative result. A common criticism of the rising volume of Chinese scientific literature in the last three decades is the quality of research coming out of it. Dramatic increases in research output are often accompanied by a publish-or-perish mindset that fosters a desperation among scientists to get published, leading to padded CVs, falsified data and plagiarism. Moreover, it’s plausible that since R&D funding in China is still controlled by a highly centralized government, flow of money is restricted and access to it is highly competitive. And when it is government officials that are evaluating science, quantitative results are favored over qualitative ones, reliance on misleading performance metrics increases, and funds are often awarded for areas of research that favor political agendas.

The PNAS paper cites the work of Shi-min Fang, a science writer who won the inaugural John Maddox prize in 2012 for exposing scientific fraud in Chinese research circles, for this. In an interview to NewScientist in November of that year, he explains the source of widespread misconduct:

It is the result of interactions between totalitarianism, the lack of freedom of speech, press and academic research, extreme capitalism that tries to commercialise everything including science and education, traditional culture, the lack of scientific spirit, the culture of saving face and so on. It’s also because there is not a credible official channel to report, investigate and punish academic misconduct. The cheaters don’t have to worry they will someday be caught and punished.

At this point, it’s tempting to draw parallels with India. While China has seen increased funding for R&D…

Click on the chart for an interactive view.
Click on the chart for an interactive view.

… India has been less fortunate.

Click on the chart for an interactive view.
Click on the chart for an interactive view.

The issue of funding is slightly different in India, in fact. While Chinese science is obstinately centralized and publicly funded, India is centralized in some parts and decentralized in others, public funding is not high enough because presumably we lack the meritocratic academic environment, and private funding is not as high as it needs to be.

Click on the image for an interactive chart.
Click on the image for an interactive chart.

Even though the PNAS paper’s authors say their breakdown of what has driven scientific output from China could inspire changes in other countries, India is faced with different issues as the charts above have shown. Indeed, the very first chart shows how, despite the number of published papers having double in the last decade, we have only jumped from one small number to another small number.

“Scientific research in India has become the handmaiden of defense technology.”

There is also a definite lack of visibility: when little scientific output of any kind is accessible to 1) the common man, and 2) the world outside. Apart from minimal media coverage, there is a paucity of scientific journals, or they exist but are not well known, accessible or both. This Jamia Milia collection lists a paltry 226 journals – including those in regional languages – but it’s likelier that there are hundreds more, both credible and dubious. A journal serves as an aggregation of reliable scientific knowledge not just for scientists but also for journalists and other reliant decision-makers. It is one place to find the latest developments.

In this context, Current Science appears to be the most favored in the country, not to mention the loneliest. Then again, a couple fingers can be pointed at years of reliance on quantitative performance metrics, which drives many Indian researchers to publish in journals with very high impact factors such as Nature or Science, which are often based outside the country.

In the absence of lists of Indian and Chinese journals, let’s turn to a table used in the PNAS paper showing average number of citations per article compared with the USA, in percent. It shows both India and China close to 40% in 2010-2011.

The poor showing may not be a direct consequence of low quality. For example, a paper may have detailed research conducted to resolve a niche issue in Indian defense technology. In such a case, the quality of the article may be high but the citability of the research itself will be low. Don’t be surprised if this is common in India given our devotion to the space and nuclear sciences. And perhaps this is what a friend of mine referred to when he said “Scientific research in India has become the handmaiden of defense technology”.

To sum up, although India and China both lag the USA and the EU for productivity and value of research (albeit through quantitative metrics), China is facing problems associated with the maturity of a voluminous scientific workforce, whereas India is quite far from that maturity. The PNAS paper is available here. If you’re interested in an analysis of engineering education in the two countries, see this paper (from which the opening lines of this post were borrowed).