Ram temple at science ‘festival’

The Surya Tilak project had courted controversy in the past with Trinamool Congress’s Mahua Moitra flagging it on social media in November 2021. The CSIR officials, however, defended the project arguing the scientific calculations that went into making the system.

‘Surya Tilak at Ram temple at the India International Science Festival backed by the Union Science Ministry’, Deccan Herald, January 18, 2024

This is a succinct demonstration of science’s need for a guiding hand. The Indian Science Congress isn’t happening this year, which is both for the better and otherwise, but given the vague allegations that have cast its status in limbo, I remain suspicious that its star declining (further) at the same time that of the India International Science Festival (IISF) is rising isn’t a coincidence. The latter has a budget of Rs 20-25 crore, according to the Deccan Herald article quoted above, “contributed by various scientific departments”.

The absolute value of India’s expense on scientific research is increasing – a horn the national government has often tooted – but as a percentage of the GDP as well as of the total annual budget, it is dropping. In this milieu, it’s amusing for the government to suddenly be able to provide Rs 20-25 crore for the IISF, when in fact the Department of Science and Technology has been giving the Science Congress a relatively lower Rs 5 crore and which last year alleged unspecified “financial irregularities” on the part of its organisers.

But as with the Science Congress, it wouldn’t be fair to dismiss the IISF altogether for some problematic exhibits and events. This said, CSIR officials contending the “Surya Tilak” of the upcoming Ram temple in Ayodhya deserves to be exhibited at the IISF because “scientific calculations” went into designing it is telling of the relationship between science, religion, and the Indian state today.

Considering there are government regulations stipulating the minimum structural characteristics of every building in the country, any non-small structure in the country could have been included in the IISF exhibit. Don’t be absurd, I hear you say, and that’s just as absurd as the officials’ reasoning.

Natural philosophy in many ancient civilisations, including those in India, was concerned with the motions of stars and planets across the sky and seasonal changes in these patterns. So as such, using the principles of modern science to design the “Surya Tilak” isn’t objectionable, or even remarkable.

But the fact that IISF is being organised by Vijnana Bharati, an RSS-affiliated body, and that Vijnana Bharati’s stated goal is “to champion the cause of Bharatiya heritage with a harmonious synthesis of physical and spiritual sciences” makes the relationship suspect – in much the same way the Vedas and other parts of India’s cultural heritage have become tainted by association with the government’s Hindutva programme. And these suspicions are heightened now thanks to the passions surrounding the impending consecration of the Ram temple idol.

A practice of science that constantly denies its political character is liable to be, and has been, appropriated in the service of a larger political or ideological agenda – but this isn’t to say science, more specifically the national community of science exponents, should assume a monolithic political position. Instead, it’s to say this is precisely the cost of misunderstanding that science and politics, as human endeavours go, are immiscible. It’s to say that scientists’ widespread and collective aspiration to be apolitical implicitly admits political influence and that we should all understand that it’s not desirable for science to be appropriated in this way. And when it is, we must bear in mind how these unions have become deleterious and how the two of them can be, or ought to be, separated so that we understand what science is (and isn’t) and what sort of legitimacy it should (and shouldn’t) be allowed to grant the state.

Defying awareness of the value of separating science and (a compromised) state strikes to me as being fundamentally antisocial because such awareness is the first step to asking how and in what circumstances they ought to be separated. It undermines the possibility of this awareness taking root. This isn’t new but in the increasing fervour surrounding the Ram temple, and India’s temple-state dis-separation the event will consummate, the importance of its loss seems heightened as well.

The alleged politicisation of science

“Don’t politicise X” has become the defence of choice for a class of scientists and public intellectuals in India whose class and caste privilege utterly blinds them to various inequities in the practice of science – as privilege is wont to do – and who labour with the presumption that these inequities, should they miraculously become aware of a few, don’t affect what new knowledge is produced and how it affects relationships predicated on a power imbalance in the wider society.

Consider a simple example: men and women are equally capable of being good scientists, but there aren’t many women the further down the academic pipeline you go because they have been driven out by their male colleagues’ and supervisors’ sexism and misogyny. As a result, a lot of modern scientific research simply collects the results of questions that men asked and questions that the same or other men answered. This problem impoverishes the scientific undertaking by depriving it of the insights and sensibilities of a significant section of society.

The way ahead from here should not be to ‘normalise’ things because the normal has come to mean the preservation of the status quo, in terms of protecting men and safeguarding their domains as temples of patriarchy; there can be progress only with near-constant struggle and pushback, and among non-male scientists as well as non-male workers, together with their male colleagues and peers, in all endeavours of modernity. It would in turn be impossible for such a historic movement to be non-political or apolitical.

A part of the problem is rooted in the demonisation of politics, at least the label itself. ‘To politicise’ has come to mean to infuse an endeavour with partisanship where there has thus far been harmony, with incentives that suppress intelligent decision-making with the simpler algorithms of populism. However, when such harmony and intelligence are products of oppression, they must go.

A male PI’s contention that women in the lab will “distract” men – as the Nobel laureate Tim Hunt said – or that they are unlikely to be available to run experiments owing to menstruation or pregnancy should prompt us to reexamine how labs are organised, the rights and freedoms of female lab-workers, and how the university frames the relationship between labour and research, and not have us considering if women should be allowed to work in labs at all. In a different context, many Indians on discussion forums and social media platforms have recently become fond of demanding that I, or anyone else, “shouldn’t politicise space”. But space has become interesting and lucrative only because it has been politicised.

“Politics,” according to Wikipedia, “is a set of activities associated with the governance of a country or an area.” In this regard, it should seem impossible for any endeavour, no matter how small or fleeting, to remain untouched by the influence of the politics of the people undertaking the endeavour. Caste-based and gender-based discrimination are obvious manifestations of this truism in Indian society; for another, consider the following snippet from an article I (first) published in July. It summarises the extent to which public policy influences the possible trajectories of scientific careers in India:

Consider a scientist from the developing world. Let’s say he is a male, English-speaking middle-class Brahmin so we can set aside the ceaseless discrimination the scientific community’s non-malenon-Hindu/non-upper-castenon-heterosexualIndian-language-speaking members face for the sake of our discussion. The picture has already been oversimplified. This scientist has access to some instruments, a few good labs, not many good mentors, irregular funding, not enough travel grants, subpar employment prospects, insufficient access to journals, lives in a polluted city with uneven public transport, rising costs of living, less water to spare and rising medical bills. If at this juncture we reinstate the less privileged Indian in this matrix, it becomes a near-chaotic picture of personal, social, economic and political problems. Even then, it is still only the substrate upon which international inequities – such as access to samples from other parts of India and the world, information published in journals that libraries can’t afford or exclusion from the editorial boards of scientific journals – will come to bear. Finally, there is the climate crisis and its discomfiting history.

For a less obvious example: Chandrayaan 2 has been widely touted as a technological as well as scientific mission. However, in the lead up to the mission’s launch on July 22 as well as after the unfortunate events of September 7, ISRO’s focus as well as that of the people and most journalists has remained on the mission’s technological aspects. In fact, ISRO chairman K. Sivan declared on September 22 that the mission had been a 98% success when its scientific phase had barely begun – that is, that Chandrayaan 2’s scientific mission constitutes only 2% of the whole thing.

As bizarre as this sounds, these proclamations are in line with ISRO’s relatively poor track record of executing sophisticated scientific missions. This should force us to confront the political economics of science administration in India – whereby those in power have become increasingly unwilling to fund non-applied research thanks to the rising influence of populist politics and its predilection for short-term gains. This is in addition to the relationships central and state-level funding agencies have with the receivers of their money, how such money is distributed between elite and non-elite institutes, and how nationalism shields ISRO from backlash as it centralises authority and further limits public outreach.

There are many other examples to illustrate that there is no such thing as the politicisation of X inasmuch as there is either the acknowledgment of this truth or its denial. But if you are still grasping for an out, there is one. There are two broad ways to divide the public perception of what politics is: the kind concerned with the principles by which we govern ourselves as a peaceful and productive society, and the kind concerned with maximising media exposure and perpetuating the inefficiencies of bureaucracy.

The influence of the former is inescapable by design and must be guided by reason and debate; the influence of the latter is regrettable and must be rejected for its small-mindedness at every opportunity. If one takes a charitable view of those fond of saying “don’t politicise X”, one would hope that they are speaking of politics of the second variety: the dirty realpolitik and its Machiavellian ambitions. But a less charitable, and an arguably more justified, view suggests that many scientists – in India at least – lack an appreciation of the politics of principles, a politics of social justice if you will.

Indeed, it is curious that many of them, together with many non-scientists as well, often prefer a more scientistic outlook, whereby the traditionally imagined ‘scientific’ disciplines and the knowledge these endeavours supply are considered to be incontestably superior to alternatives derived from, say, sociological studies or even paralogical systems like religion and traditional beliefs. To quote the philosopher of science Paul Feyerabend, “Neither science nor rationality are universal measures of excellence. They are particular traditions, unaware of their historical grounding.” (Source: Against Method, fourth ed., p. 223.)

But modern society considers politicisation to be a greater threat than scientism whereas historians of science brim with anecdotes about how the scientific endeavour remains constantly on the cusp of being weaponised in the absence of political safeguards that regulate its practice. The ongoing nationalist project to debase non-scientific research typifies this; to quote from an older post on this blog:

… the left has been painted as anti-fact and the right [as being guided] by righteous logic when in fact this is the result of the deeper dismissal of the validity of the social sciences and humanities, which have served throughout history to make facts right and workable in their various contexts. The right has appropriated the importance of quantitative measures – and that alone – and brandishes it like a torch. … And by attacking the validity of the social sciences and humanities, the left has effectively had the rug pulled out from under its feet, and the intellectual purpose of its existence delegitimised.

Not all of us may fully appreciate how we got here, but there is no question that we are indeed here – and that the way forward must be cognisant of, if not entirely critical of, the alleged politicisation of science and the political agendas of the perpetrators of this idea.

The metaphorical transparency of responsible media

Featured image credit: dryfish/Flickr, CC BY 2.0.

I’d written a two-part essay (although they were both quite short; reproduced in full below) on The Wire about what science was like in 2016 and what we can look forward to in 2017. The first part was about how science journalism in India is a battle for relevance, both within journalistic circles and among audiences. The second was about how science journalism needs to be treated like other forms of journalism in 2017, and understood to be afflicted with the same ills that, say, political and business journalism are.

Other pieces on The Wire that had the same mandate, of looking back and looking forward, stuck to being roundups and retrospective analyses. My pieces were retrospective, too, but they – to use the parlance of calculus – addressed the second derivative of science journalism, in effect performing a meta-analysis of the producers and consumers of science writing. This blog post is a quick discussion (or rant) of why I chose to go the “science media” way.

We in India often complain about how the media doesn’t care enough to cover science stories. But when we’re looking back and forward in time, we become blind to the media’s efforts. And looking back is more apparently problematic than is looking forward.

Looking back is problematic because our roundup of the ‘best’ science (the ‘best’ being whatever adjective you want it to be) from the previous year is actually a roundup of the ‘best’ science we were able to discover or access from the previous year. Many of us may have walled ourselves off into digital echo-chambers, sitting within not-so-fragile filter bubbles and ensuring news we don’t want to read about doesn’t reach us at all. Even so, the stories that do reach us don’t make up the sum of all that is available to consume because of two reasons:

  1. We practically can’t consume everything, period.
  2. Unless you’re a journalist or someone who is at the zeroth step of the information dissemination pyramid, your submission to a source of information is simply your submission to another set of filters apart from your own. Without these filters, finding something you are looking for on the web would be a huge problem.

So becoming blind to media efforts at the time of the roundup is to let journalists (who sit higher up on the dissemination pyramid) who should’ve paid more attention to scientific developments off the hook. For example, assuming things were gloomy in 2016 is assuming one thing given another thing (like a partial differential): “while the mood of science news could’ve been anything between good and bad, it was bad” GIVEN “journalists mostly focused on the bad news over the good news”. This is only a simplistic example: more often than not, the ‘good’ and ‘bad’ can be replaced by ‘significant’ and ‘insignificant’. Significance is also a function of media attention. At the time of probing our sentiments on a specific topic, we should probe the information we have as well as how we acquired that information.

Looking forward without paying attention to how the media will likely deal with science is less apparently problematic because of the establishment of the ideal. For example, to look forward is also to hope: I can say an event X will be significant irrespective of whether the media chooses to cover it (i.e., “it should ideally be covered”); when the media doesn’t cover the event, then I can recall X as well as pull up journalists who turned a blind eye. In this sense, ignoring the media is to not hold its hand at the beginning of the period being monitored – and it’s okay. But this is also what I find problematic. Why not help journalists look out for an event when you know it’s going to happen instead of relying on their ‘news sense’, as well as expecting them to have the time and attention to spend at just the right time?

Effectively: pull us up in hindsight – but only if you helped us out in foresight. (The ‘us’ in this case is, of course, #notalljournalists. Be careful with whom you choose to help or you could be wasting your time.)


Part I: Why Independent Media is Essential to Good Science Journalism

What was 2016 like in science? Furious googling will give you the details you need to come to the clinical conclusion that it wasn’t so bad. After all, LIGO found gravitational waves; an Ebola vaccine was readied; ISRO began tests of its reusable launch vehicle; the LHC amassed particle collisions data; the Philae comet-hopping mission ended; New Horizons zipped past Pluto; Juno is zipping around Jupiter; scientists did amazing (but sometimes ethically questionable) things with CRISPR; etc. But if you’ve been reading science articles throughout the year, then please take a step back from everything and think about what your overall mood is like.

Because, just as easily as 2016 was about mega-science projects doing amazing things, it was also about climate-change action taking a step forward but not enough; about scientific communities becoming fragmented; about mainstream scientific wisdom becoming entirely sidelined in some parts of the world; about crucial environmental protections being eroded; about – undeniably – questionable practices receiving protection under the emotional cover of nationalism. As a result, and as always, it is difficult to capture what this year was to science in a single mood, unless that mood in turn captures anger, dismay, elation and bewilderment at various times.

So, to simplify our exercise, let’s do that furious googling – and then perform a meta-analysis to reflect on where each of us sees fit to stand with respect to what the Indian scientific enterprise has been up to this year. (Note: I’m hoping this exercise can also be a referendum on the type of science news The Wire chose to cover this year, and how that can be improved in 2017.) The three broad categories (and sub-categories) of stories that The Wire covered this year are:

GOOD BAD UGLY
Different kinds of ISRO rockets – sometimes with student-built sats onboard – took off Big cats in general, and leopards specifically, had a bad year Indian scientists continued to plagiarise and engage in other forms of research misconduct without consequence
ISRO decided to partially privatise PSLV missions by 2020 The JE/AES scourge struck again, their effects exacerbated by malnutrition The INO got effectively shut down
LIGO-India collaboration received govt. clearance; Indian scientists of the LIGO collaboration received a vote of confidence from the international community PM endorsed BGR-34, an anti-diabetic drug of dubious credentials Antibiotic resistance worsened in India (and other middle-income nations)
We supported ‘The Life of Science’ Govt. conceived misguided culling rules India succumbed to US pressure on curtailing generic drugs
Many new species of birds/animals discovered in India Ken-Betwa river linkup approved at the expense of a tiger sanctuary Important urban and rural waterways were disrupted, often to the detriment of millions
New telescopes were set up, further boosting Indian astronomy; ASTROSAT opened up for international scientists Many conservation efforts were hampered – while some were mooted that sounded like ministers hadn’t thought them through Ministers made dozens of pseudoscientific claims, often derailing important research
Otters returned to their habitats in Kerala and Goa A politician beat a horse to its death Fake-science-news was widely reported in the Indian media
Janaki Lenin continued her ‘Amazing Animals’ series Environmental regulations turned and/or stayed anti-environment Socio-environmental changes resulting from climate change affect many livelihoods around the country
We produced monthly columns on modern microbiology and the history of science We didn’t properly respond to human-wildlife conflicts Low investments in public healthcare, and focus on privatisation, short-changed Indian patients
Indian physicists discovered a new form of superconductivity in bismuth GM tech continues to polarise scientists, social scientists and activists Space, defence-research and nuclear power establishments continued to remain opaque
/ Conversations stuttered on eastern traditions of science /

I leave it to you to weigh each of these types of stories as you see fit. For me – as a journalist – science in the year 2016 was defined by two parallel narratives: first, science coverage in the mainstream media did not improve; second, the mainstream media in many instances remained obediently uncritical of the government’s many dubious claims. As a result, it was heartening on the first count to see ‘alternative’ publications like The Life of Science and The Intersection being set up or sustained (as the case may be).

On the latter count: the media’s submission paralleled, rather directly followed, its capitulation to pro-government interests (although some publications still held out). This is problematic for various reasons, but one that is often overlooked is that the “counterproductive continuity” that right-wing groups stress upon – between traditional wisdom and knowledge derived through modern modes of investigation – receives nothing short of a passive endorsement by uncritical media broadcasts.

From within The Wire, doing a good job of covering science has become a battle for relevance as a result. And this is a many-faceted problem: it’s as big a deal for a science journalist to come upon and then report a significant story as finding the story itself in the first place – and it’s as difficult to get every scientist you meet to trust you as it is to convince every reader who visits The Wire to read an article or two in the science section per visit. Fortunately (though let it not be said that this is simply a case of material fortunes), the ‘Science’ section on The Wire has enjoyed both emotional and financial support. To show for it, we have had the privilege of overseeing the publication of 830 articles, and counting, in 2016 (across science, health, environment, energy, space and tech). And I hope those who have written for this section will continue to write for it, even as those who have been reading this section will continue to read it.

Because it is a battle for relevance – a fight to be noticed and to be read, even when stories have nothing to do with national interests or immediate economic gains – the ideal of ‘speaking truth to power’ that other like-minded sections of the media cherish is preceded for science journalism in India by the ideals of ‘speaking’ first and then ‘speaking truth’ second. This is why an empowered media is as essential to the revival of that constitutionally enshrined scientific temperament as are productive scientists and scientific institutions.

The Wire‘s journalists have spent thousands of hours this year striving to be factually correct. The science writers and editors have also been especially conscientious of receiving feedback at all stages, engaging in conversations with our readers and taking prompt corrective action when necessary – even if that means a retraction. This will continue to be the case in 2017 as well in recognition of the fact that the elevation of Indian science on the global stage, long hailed to be overdue, will directly follow from empowering our readers to ask the right questions and be reasonably critical of all claims at all times, no matter who the maker.

Part II: If You’re Asking ‘What To Expect in Science in 2017’, You Have Missed the Point

While a science reporter at The Hindu, this author conducted an informal poll asking the newspaper’s readers to speak up about what their impressions were of science writing in India. The answers, received via email, Twitter and comments on the site, generally swung between saying there was no point and saying there was a need to fight an uphill battle to ‘bring science to everyone’. After the poll, however, it still wasn’t clear who this ‘everyone’ was, notwithstanding a consensus that it meant everyone who chanced upon a write-up. It still isn’t clear.

Moreover, much has been written about the importance of science, the value of engaging with it in any form without expectation of immediate value and even the usefulness of looking at it ‘from the outside in’ when the opportunity arises. With these theses in mind (which I don’t want to rehash; they’re available in countless articles on The Wire), the question of “What to expect in science in 2017?” immediately evolves into a two-part discussion. Why? Because not all science that happens is covered; not all science that is covered is consumed; and not all science that is consumed is remembered.

The two parts are delineated below.

What science will be covered in 2017?

Answering this question is an exercise in reinterpreting the meaning of ‘newsworthiness’ subject to the forces that will assail journalism in 2017. An immensely simplified way is to address the following factors: the audience, the business, the visible and the hidden.

The first two are closely linked. As print publications are shrinking and digital publications growing, a consideration of distribution channels online can’t ignore the social media – specifically, Twitter and Facebook – as well as Google News. This means that an increasing number of younger readers are available to target, which in turn means covering science in a way that interests this demographic. Qualities like coolness and virality will make an item immediately sellable to marketers whereas news items rich with nuance and depth will take more work.

Another way to address the question is in terms of what kind of science will be apparently visible, and available for journalists to easily chance upon, follow up and write about. The subjects of such writing typically are studies conducted and publicised by large labs or universities, involving scientists working in the global north, and often on topics that lend themselves immediately to bragging rights, short-lived discussions, etc. In being aware of ‘the visible’, we must be sure to remember ‘the invisible’. This can be defined as broadly as in terms of the scientists (say, from Latin America, the Middle East or Southeast Asia) or the studies (e.g., by asking how the results were arrived at, who funded the studies and so forth).

On the other hand, ‘the hidden’ is what will – or ought to – occupy those journalists interested in digging up what Big X (Pharma, Media, Science, etc.) doesn’t want publicised. What exactly is hidden changes continuously but is often centred on the abuse of privilege, the disregard of those we are responsible for and, of course, the money trail. The issues that will ultimately come to define 2017 will all have had dark undersides defined by these aspects and which we must strive to uncover.

For example: with the election of Donald Trump, and his bad-for-science clique of bureaucrats, there is a confused but dawning recognition among liberals of the demands of the American midwest. So to continue to write about climate change targeting an audience composed of left-wingers or east coast or west coast residents won’t work in 2017. We must figure out how to reach across the aisle and disabuse climate deniers of their beliefs using language they understand and using persuasions that motivate them to speak to their leaders about shaping climate policy.

What will be considered good science journalism in 2017?

Scientists are not magical creatures from another world – they’re humans, too. So is their collective enterprise riddled with human decisions and human mistakes. Similarly, despite all the travails unique to itself, science journalism is fundamentally similar to other topical forms of journalism. As a result, the broader social, political and media trends sweeping around the globe will inform novel – or at least evolving – interpretations of what will be good or bad in 2017. But instead of speculating, let’s discuss the new processes through which good and bad can be arrived at.

In this context, it might be useful to draw from a blog post by Jay Rosen, a noted media critic and professor of journalism at New York University. Though the post focuses on what political journalists could do to adapt to the Age of Trump, its implied lessons are applicable in many contexts. More specifically, the core effort is about avoiding those primary sources of information (out of which a story sprouts) the persistence with which has landed us in this mess. A wildly remixed excerpt:

Send interns to the daily briefing when it becomes a newsless mess. Move the experienced people to the rim. Seek and accept offers to speak on the radio in areas of Trump’s greatest support. Make common cause with scholars who have been there. Especially experts in authoritarianism and countries when democratic conditions have been undermined, so you know what to watch for— and report on. (Creeping authoritarianism is a beat: who do you have on it?). Keep an eye on the internationalization of these trends, and find spots to collaborate with journalists across borders. Find coverage patterns that cross [the aisle].

And then this:

[Washington Post reporter David] Fahrenthold explains what he’s doing as he does it. He lets the ultimate readers of his work see how painstakingly it is put together. He lets those who might have knowledge help him. People who follow along can see how much goes into one of his stories, which means they are more likely to trust it. … He’s also human, humble, approachable, and very, very determined. He never goes beyond the facts, but he calls bullshit when he has the facts. So impressive are the results that people tell me all the time that Fahrenthold by himself got them to subscribe.

Transparency is going to matter more than ever in 2017 because of how the people’s trust in the media was eroded in 2016. And there’s no reason science journalism should be an exception to these trends – especially given how science and ideology quickly locked horns in India following the disastrous Science Congress in 2015. More than any other event since the election of the Bharatiya Janata Party to the centre, and much like Trump’s victory caught everyone by surprise, the 2015 congress really spotlighted the extent of rational blight that had seeped into the minds of some of India’s most powerful ideologues. In the two years since, the reluctance of scientists to step forward and call bullshit out has also started to become more apparent, as a result exposing the different kinds of undercurrents that drastic shifts in policies have led to.

So whatever shape good science journalism is going to assume in 2017, it will surely benefit by being more honest and approachable in its construction. As will the science journalist who is willing to engage with her audience about the provenance of information and opinions capable of changing minds. As Jeff Leek, an associate professor at the Johns Hopkins Bloomberg School of Public Health, quoted (statistician Philip Stark) on his blog: “If I say just trust me and I’m wrong, I’m untrustworthy. If I say here’s my work and it’s wrong, I’m honest, human, and serving scientific progress.”

Here’s to a great 2017! 🙌🏾

Wealth and religiosity disagree while some Hindus look the other way

My extended family’s annual trip to Tirupati is coming up. Because a more indecisive bunch doth not exist, my relatives have been planning the trip for the last week. One creepy fact their discussions threw up is that, in 2013, the temple earned Rs. 220 crore from its sale of human hair. Pilgrims shave their heads at Tirupati as a token offering, and about 40 million people visit it annually. Although not all of them offer their hair, Rs. 220-crore’s worth must be a lot.

According to this PDF detailing the temple’s finances, the biggest chunk of its income comes from cash offerings from devotees, listed as ‘Kanuka’.

pie1

(All figures in Rs. crore)

Its other revenue receipts, including hair, are listed as such:

pie2

(All figures in Rs. crore)

Many of the world’s richest temples are in India. Some of the richest include the shrine at Shirdi, Maharashtra, for Sai Baba; the Padmanabhaswamy Temple, Thiruvananthapuram, Kerala; the Mahabodhi temple in Bodh Gaya, Bihar; and the Vaishno Devi temple in Jammu and Kashmir. Besides boasting overwhelming attendances, they’re also proof that Hinduism is a very materialistic religion when it comes to offerings despite its abstemious philosophies.

No matter this hypocrisy – the world at large rejects it anyway because religion and wealth share a negative relationship. Specifically, countries with higher GDP have lower religiosity. This document, wherefrom the religiosity numbers were pulled, defines religiosity as simply the fraction of people who identified themselves as religious in a survey.

gdprel