Looking (only) for Nehru

I have a habit of watching one old Tamil film a day. Yesterday evening, I was watching a film released in 1987, called Ivargal Indiyargal (‘They Are Indians’). In a scene in the film, an office manager distributes sweets to his colleagues. One of them takes a look at the item and asks the manager if he bought it from a particular shop that was famous for such items. The manager takes umbrage and scolds his colleague that he’s been asking that question for too many years, and demands to know if no other good sweet shop has opened since.

An innocuous scene in an innocuous film, yet it seemed to have a parallel with the Chandrayaan-3 mission. On August 23, as I’m sure you’re aware, the mission’s robotic lander module touched down in the moon’s south polar region, rendering India the first country to achieve this feat. It was a moment worth celebrating without any reservations, yet soon after, the social media commentariat had found a way – admittedly not difficult – to make it part of its relentlessly superficial avalanche of controversy and dissension. One vein of it was of course split along the lines of what Jawaharlal Nehru did or didn’t do to help ISRO in its formative years. (The Hindu also received some letters from readers to this effect.)

But more than right-wing nuts trying to rewrite history in order to diminish the influence of Nehru’s ideals on modern India, I find the counter-argument to be curious and, sometimes, worth some concern. The rebuttals frequently take the form that we must remember Nehru in this time, the idea of scientific temper with which he was so taken, the “importance of science” for India’s development, the virtues of Nehruvian secularism, and so forth. It seems to be a reflex to leap all the way back to the first 16 years after independence, always at the cost of many more variants of all these ideals, often refined or revised to better accommodate the pressures of development, modernisation, and globalisation. (See here for one example.)

Members of the Congress party are partly to blame: sometimes they seem incapable of commemorating an event in terms other than that Nehru set the stage for them many years ago. BJP nationalists have also displayed a similar tendency. For example, in 2013, after Peter Higgs and François Englert were awarded the physics Nobel Prize for predicting the existence of the Higgs boson, the nationalists demanded that the laureates should have honoured Satyendra Nath Bose, whose work laid the foundation for the study of all bosons, and that the ‘b’ in ‘boson’ should always be capitalised. It was a ridiculous ask that was disinterested in work that had built on Bose’s ideas and papers in the intervening years, and also betrayed a failure to understand how really a scientist and thinker of Bose’s calibre ought to be honoured, more than capitalising little letters.

Similarly, today, the full weight of Nehru’s legacy is invoked even to counter arguments as rudimentary as chest-thumping. To quote the office manager in Ivargal Indiyargal, has there been no other articulation of the same impulses? My concern about this frankly insensible habit to reach for Nehru is threefold: first, it will overlook other ideas from other individuals grounded in different lived experiences (especially those of marginalisation); second, the moments in which he is invoked are conducive to glazing over the problems, found only upon a closer look, with what Nehru and for that matter Vikram Sarabhai, Satish Dhawan, and others stood for; and third, perhaps I’m a fool to look for sense where it has seldom been found.

PTI, celebrating scientists, and class/caste

SpaceX announced a day or two ago that the crew of its upcoming Polaris Dawn mission will include a space operations engineer at the company named Anna Menon. As if on cue, PTI published a report on February 15 under the headline: “SpaceX engineer Anna Menon to be among crew of new space mission”. I’ve been a science journalist for almost a decade now and I’ve always seen PTI publish reports pegged on the fact that a scientist in the news for some reason has an Indian last name.

In my view, it’s always tricky to celebrate scientists for whatever they’ve done by starting from their nationality. Consider the case of Har Gobind Khorana, whose birth centenary we marked recently. Khorana was born in Multan in pre-independence India in 1922, and studied up to his master’s degree in the country until 1945. Around 1950, he returned to India for a brief period in search of a job. He didn’t succeed, but fortunately received a scholarship to return to the UK, where he had completed his PhD. After that Khorana was never based in India, and continued his work in the UK, Canada and the US.

He won a Nobel Prize in 1968, and India conferred him with the Padma Vibhushan in 1969, and India’s Department of Biotechnology floated a scholarship in his name in 2007 (together with the University of Wisconsin and the India-US S&T Forum). I’m glad to celebrate Khorana for his scientific work, or his reputation as a teacher, but how do I celebrate Khorana because he was born in India? Where is the celebration-worthy thing in that?

To compare, it’s easy for me to celebrate Satyendra Nath Bose for his science as well as his nationality because Bose studied and worked in India throughout his life (including at the University of Dhaka in the early 1920s), so his work is a reflection of his education in India and his struggles to succeed, such as they were, in India. An even better example here would be that of Meghnad Saha, who struggled professionally and financially to make his mark on stellar astrophysics. But Khorana completed a part of his studies in India and a part abroad and worked entirely abroad. When I celebrate his work because he was Indian, I’m participating in an exercise that has no meaning – or does in the limited, pernicious sense of one’s privileges.

The same goes for Anna Menon, and her partner Anil Menon, a flight surgeon whom NASA selected to be a part of its astronaut crew earlier this year. According to Anil’s Wikipedia page, he was in India for a year in 2000; other than that, he studied and worked in the US from start to today. I couldn’t find much about Anna’s background online, except that her last name before she got married to Anil in 2016 was Wilhelm, that she studied her fourth grade and completed her bachelor’s and master’s studies in the US, and that there is nothing other than her partner’s part Indian heritage (the other part is Ukrainian) to suggest she has a significant India connection.

So celebrating Anna Menon by sticking her name in a headline makes little sense. It’s not like PTI has been reporting on her work over time for it to single her out in the headline now. The agency should just have said “SpaceX announces astronaut crew for pioneering Polaris Dawn mission” or “With SpaceX draft, Anna Menon could beat her partner Anil to space”. There’s so much worth celebrating here, but gravitating towards the ‘Menon’ will lead you astray.

This in turn gives rise to a question about one’s means, and in turn one’s class/caste (historically as well as today, both the chance to leave the country to study, work and live abroad and the chance to conduct good work and have it noticed has typically accrued and accrues to upper-caste, upper-class peoples – Saha’s example again comes to mind; such chances have also been stacked against people of genders other than cis-male).

When we talk about a scientist who did good work in India, we automatically talk about the outcomes of privileges that they enjoy. Similarly, when we talk of a scientist doing good work in a different country, we also talk about implicit caste/class advantage in India, the country of origin, that allowed them to depart and advantages they subsequently came into at their destination.

But when we place people who are doing something noteworthy in the spotlight for no reason other than because they have Indian last names, we are celebrating nothing except this lopsided availability of paths to success (broadly defined) – without critiquing the implied barriers to finding similar success within India itself.

We need to think more critically about who we are celebrating and why: if there is no greater reason than that they have had a parent or a family rooted in India, the story must be dropped. If there is a greater reason, that should define the headline, the peg, etc. And if possible the author should also accommodate a comment or two about specific privileges not available to most scientists and which might have made the difference in this case.

This post benefited from valuable feedback from Jahnavi Sen.

On anticipation and the history of science

In mid-2012, shortly after physicists working with the Large Hadron Collider (LHC) in Europe had announced the discovery of a particle that looked a lot like the Higgs boson, there was some clamour in India over news reports not paying enough attention or homage to the work of Satyendra Nath Bose. Bose and Albert Einstein together developed Bose-Einstein statistics, a framework of rules and principles that describe how fundamental particles called bosons behave. (Paul A.M. Dirac named these particles in Bose’s honour.) The director-general of CERN, the institute that hosts the LHC, had visited India shortly after the announcement and said in a speech in Kolkata that in honour of Bose, he and other physicists had decided to capitalise the ‘b’ in ‘boson’.

It was a petty victory of a petty demand, but few realised that it was also misguided. Bose made the first known (or at least published) attempts to understand the particles that would come to be called bosons – but neither he nor Einstein anticipated the existence of the Higgs boson. There have also been some arguments (justified, I think) that Bose wasn’t awarded a Nobel Prize for his ideas because he didn’t make testable predictions; Einstein received the Nobel Prize for physics in 1915 for anticipating the photoelectric effect. The point is that it was unreasonable to expect Bose’s work to be highlighted, much less attributed, as some had demanded at the time, every time we find a new boson particle.

What such demands only did was to signal an expectation that the reflection of every important contribution by an Indian scientist ought to be found in every major discovery or invention. Such calls detrimentally affect the public perception of science because they are essentially contextless.

Let’s imagine that discovery of the Higgs boson was the result of series of successes, depicted thus:

O—o—o—o—o—O—O—o—o—O—o—o—o—O

An ‘O’ shows a major success and an ‘o’ shows a minor success, where major/minor could mean the relative significance within particle physics communities, the extent to which physicists anticipated it or simply the amount of journal/media coverage it received. In this sequence, Bose’s paper on a certain class of subatomic particles could be the first ‘O’ and the discovery of the Higgs boson the last ‘O’. And looking at this sequence, one could say Bose’s work led to a lot of the work that came after and ultimately led to the Higgs boson. However, doing that would diminish the amount of study, creativity and persistence that went into each subsequent finding – and would also ignore the fact that we have identified only one branch of endeavour, leading from Bose’s work to the Higgs boson, whereas in reality there are hundreds of branches crisscrossing each other at every o, big or small – and then there are countless epiphanies, ideas and flashes, each one less the product of following the scientific method and more of a mysterious combination of science and intuition.

By reducing the opportunity to celebrate Bose’s work by pointing to just the Higgs boson point on the branch, we lose the opportunities to know and celebrate the importance of Bose’s work for all the points in between, but especially the points that we still haven’t taken the trouble to understand.

Recently, a couple people forwarded to me a video on WhatsApp of an Indian-American electrical engineer named Nisar Ahmed. I learnt when in college (studying engineering) that Nisar Ahmed was the co-inventor, along with K. Ramamohan Rao, of the direct cosine transform, a technique to transmit a given amount of information using fewer bits than those contained in the information itself. The video introduced Ahmed’s work as the basis for our being able to take video-conferencing for granted; direct cosine transform allows audiovisual data to be compressed by two, maybe three orders of magnitude, making its transmission across the internet much less resource-intensive than if it had to be transmitted without compression.

However, the video did little to address the immediate aftermath of Ahmed’s and Rao’s paper, the other work by other scientists that built on it, as well as its use in other settings, and rested on the drawing just one connection between two fairly unrelated events (direct cosine transform and their derivatives, many of them created in the same decade, heralded signal compression, but they didn’t particularly anticipate different forms of communication).

This flattening of the history of science, and technology as the case may be, may be entertaining but it offers no insights into the processes at work behind these inventions, and certainly doesn’t admit any other achivements before each development. In the video, Ahmed reads out tweets by people reacting to his work as depicted on the show This Is Us. One of them says that it’s because of him, and because of This Is Us, that people are now able to exchange photos and videos of each other around the world, without worrying about distance. But… no; Ahmed himself says in the video, “I couldn’t predict how fast the technology would move” (based on his work).

Put it simply, I find such forms of communication – and thereunto the way we are prompted to think about science – objectionable because they are content with ‘what’, and aren’t interested in ‘when’, ‘why’ or ‘how’. And simply enumerating the ‘what’ is practically non-scientific, more so when they’re a few particularly sensational whats over others that encourage us to ignore the inconvenient details. Other similar recent examples were G.N. Ramachandran, whose work on protein structure, especially Ramachandran plots, have been connected to pharmaceutical companies’ quest for new drugs and vaccines, and Har Gobind Khorana, whose work on synthesising RNA has been connected to mRNA vaccines.

When cooling down really means slowing down

Consider this post the latest in a loosely defined series about atomic cooling techniques that I’ve been writing since June 2018.

Atoms can’t run a temperature, but things made up of atoms, like a chair or table, can become hotter or colder. This is because what we observe as the temperature of macroscopic objects is at the smallest level the kinetic energy of the atoms it is made up of. If you were to cool such an object, you’d have to reduce the average kinetic energy of its atoms. Indeed, if you had to cool a small group of atoms trapped in a container as well, you’d simply have to make sure they – all told – slow down.

Over the years, physicists have figured out more and more ingenious ways to cool atoms and molecules this way to ultra-cold temperatures. Such states are of immense practical importance because at very low energy, these particles (an umbrella term) start displaying quantum mechanical effects, which are too subtle to show up at higher temperatures. And different quantum mechanical effects are useful to create exotic things like superconductors, topological insulators and superfluids.

One of the oldest modern cooling techniques is laser-cooling. Here, a laser beam of a certain frequency is fired at an atom moving towards the beam. Electrons in the atom absorb photons in the beam, acquire energy and jump to a higher energy level. A short amount of time later, the electrons lose the energy by emitting a photon and jump back to the lower energy level. But since the photons are absorbed in only one direction but are emitted in arbitrarily different directions, the atom constantly loses momentum in one direction but gains momentum in a variety of directions (by Newton’s third law). The latter largely cancel themselves out, leaving the atom with considerably lower kinetic energy, and therefore cooler than before.

In collisional cooling, an atom is made to lose momentum by colliding not with a laser beam but with other atoms, which are maintained at a very low temperature. This technique works better if the ratio of elastic to inelastic collisions is much greater than 50. In elastic collisions, the total kinetic energy of the system is conserved; in inelastic collisions, the total energy is conserved but not the kinetic energy alone. In effect, collisional cooling works better if almost all collisions – if not all of them – conserve kinetic energy. Since the other atoms are maintained at a low temperature, they have little kinetic energy to begin with. So collisional cooling works by bouncing warmer atoms off of colder ones such that the colder ones take away some of the warmer atoms’ kinetic energy, thus cooling them.

In a new study, a team of scientists from MIT, Harvard University and the University of Waterloo reported that they were able to cool a pool of NaLi diatoms (molecules with only two atoms) this way to a temperature of 220 nK. That’s 220-billionths of a kelvin, about 12-million-times colder than deep space. They achieved this feat by colliding the warmer NaLi diatoms with five-times as many colder Na (sodium) atoms through two cycles of cooling.

Their paper, published online on April 8 (preprint here), indicates that their feat is notable for three reasons.

First, it’s easier to cool particles (atoms, ions, etc.) in which as many electrons as possible are paired to each other. A particle in which all electrons are paired is called a singlet; ones that have one unpaired electron each are called doublets; those with two unpaired electrons – like NaLi diatoms – are called triplets. Doublets and triplets can also absorb and release more of their energy by modifying the spins of individual electrons, which messes with collisional cooling’s need to modify a particle’s kinetic energy alone. The researchers from MIT, Harvard and Waterloo overcame this barrier by applying a ‘bias’ magnetic field across their experiment’s apparatus, forcing all the particles’ spins to align along a common direction.

Second: Usually, when Na and NaLi come in contact, they react and the NaLi molecule breaks down. However, the researchers found that in the so-called spin-polarised state, the Na and NaLi didn’t react with each other, preserving the latter’s integrity.

Third, and perhaps most importantly, this is not the coldest temperature to which we have been able to cool quantum particles, but it still matters because collisional cooling offers unique advantages that makes it attractive for certain applications. Perhaps the most well-known of them is quantum computing. Simply speaking, physicists prefer ultra-cold molecules to atoms to use in quantum computers because physicists can control molecules more precisely than they can the behaviour of atoms. But molecules that have doublet or triplet states or are otherwise reactive can’t be cooled to a few billionths of a kelvin with laser-cooling or other techniques. The new study shows they can, however, be cooled to 220 nK using collisional cooling. The researchers predict that in future, they may be able to cool NaLi molecules even further with better equipment.

Note that the researchers didn’t cool the NaLi atoms from room temperature to 220 nK but from 2 µK. Nonetheless, their achievement remains impressive because there are other well-established techniques to cool atoms and molecules from room temperature to a few micro-kelvin. The lower temperatures are harder to reach.

One of the researchers involved in the current study, Wolfgang Ketterle, is celebrated for his contributions to understanding and engineering ultra-cold systems. He led an effort in 2003 to cool sodium atoms to 0.5 nK – a record. He, Eric Cornell and Carl Wieman won the Nobel Prize for physics two years before that: Cornell, Wieman and their team created the first Bose-Einstein condensate in 1995, and Ketterle created ‘better’ condensates that allowed for closer inspection of their unique properties. A Bose-Einstein condensate is a state of matter in which multiple particles called bosons are ultra-cooled in a container, at which point they occupy the same quantum state – something they don’t do in nature (even as they comply with the laws of nature) – and give rise to strange quantum effects that can be observed without a microscope.

Ketterle’s attempts make for a fascinating tale; I collected some of them plus some anecdotes together for an article in The Wire in 2015, to mark the 90th year since Albert Einstein had predicted their existence, in 1924-1925. A chest-thumper might be cross that I left Satyendra Nath Bose out of this citation. It is deliberate. Bose-Einstein condensates are named for their underlying theory, called Bose-Einstein statistics. But while Bose had the idea for the theory to explain the properties of photons, Einstein generalised it to more particles, and independently predicted the existence of the condensates based on it.

This said, if it is credit we’re hungering for: the history of atomic cooling techniques includes the brilliant but little-known S. Pancharatnam. His work in wave physics laid the foundations of many of the first cooling techniques, and was credited as such by Claude Cohen-Tannoudji in the journal Current Science in 1994. Cohen-Tannoudji would win a piece of the Nobel Prize for physics in 1997 for inventing a technique called Sisyphus cooling – a way to cool atoms by converting more and more of their kinetic energy to potential energy, and then draining the potential energy.

Indeed, the history of atomic cooling techniques is, broadly speaking, a history of physicists uncovering newer, better ways to remove just a little bit more energy from an atom or molecule that’s already lost a lot of its energy. The ultimate prize is absolute zero, the lowest temperature possible, at which the atom retains only the energy it can in its ground state. However, absolute zero is neither practically attainable nor – more importantly – the goal in and of itself in most cases. Instead, the experiments in which physicists have achieved really low temperatures are often pegged to an application, and getting below a particular temperature is the goal.

For example, niobium nitride becomes a superconductor below 16 K (-257º C), so applications using this material prepare to achieve this temperature during operation. For another, as the MIT-Harvard-Waterloo group of researchers write in their paper, “Ultra-cold molecules in the micro- and nano-kelvin regimes are expected to bring powerful capabilities to quantum emulation and quantum computing, owing to their rich internal degrees of freedom compared to atoms, and to facilitate precision measurement and the study of quantum chemistry.”

Relativity’s kin, the Bose-Einstein condensate, is 90 now

Excerpt:

Over November 2015, physicists and commentators alike the world over marked 100 years since the conception of the theory of relativity, which gave us everything from GPS to blackholes, and described the machinations of the universe at the largest scales. Despite many struggles by the greatest scientists of our times, the theory of relativity remains incompatible with quantum mechanics, the rules that describe the universe at its smallest, to this day. Yet it persists as our best description of the grand opera of the cosmos.

Incidentally, Einstein wasn’t a fan of quantum mechanics because of its occasional tendencies to violate the principles of locality and causality. Such violations resulted in what he called “spooky action at a distance”, where particles behaved as if they could communicate with each other faster than the speed of light would have it. It was weirdness the likes of which his conception of gravitation and space-time didn’t have room for.

As it happens, 2015 also marks another milestone, also involving Einstein’s work – as well as the work of an Indian scientist: Satyendra Nath Bose. It’s been 20 years since physicists realised the first Bose-Einstein condensate, which has proved to be an exceptional as well as quirky testbed for scientists probing the strange implications of a quantum mechanical reality.

Its significance today can be understood in terms of three ‘periods’ of research that contributed to it: 1925 onward, 1975 onward, and 1995 onward.

Read the full piece here.

 

The Nobel intent

A depiction of Alfred Nobel in the Nobel Museum in Stockholm. Credit: sol_invictus/Flickr, CC BY 2.0
A depiction of Alfred Nobel in the Nobel Museum in Stockholm. Credit: sol_invictus/Flickr, CC BY 2.0

About three weeks from now, the Nobel Foundation will announce the winners of the 2015 Nobel Prizes. Every year, commentators, opinionators and enthusiasts try to guess who will win the awards – some of them have become famous because they’ve been able to guess the winners with uncanny accuracy. However, as it happens, the prizewinners’ profiles have sometimes exposed patterns which tell us how they might have been selected over others. For example, winners of the physics prize have also typically been awarded the Wolf Prize. For another, like a recent study showed, winners of the medicine and physiology prizes seem to have had similar qualitative preferences for their inter-institutional collaborations.

More light is likely to be shed on its opaque selection process by the Nobel Foundation’s decision to open up its archives and reveal the name of not just all nominees but also the nominators who got those names on the rosters each year.  The complete list for all prizes – except economics – awarded between 1901 and 1964 is now available for the first time. The lists for awards given after 1965 are not visible because they’re sealed for 50 years. With the information, the question of “Who nominated whom?” is worth asking not just for trivia’s sake but also because it throws up clues about the politics behind decisions, the kinds of names that were ignored for the prizes, why they were ignored, and how the underpinning rationale has changed through various social periods.

There are three famous examples with which to illustrate these issues.

Mohandas Gandhi

The first is of M.K. Gandhi. The Nobel Committee admitted in 2001 that overlooking Gandhi had been one of its most infamous mistakes. In 1937, in a total of 63 nominations by prominent people, Gandhi received his first: from Ole Colbjørnsen, a Norwegian politician. Colbjørnsen would nominate Gandhi in 1938 and 1939 as well. After that, the name of Gandhi among the nominees reappears in 1947, put there by G.B. Pant, B.G. Kher and Mavalankar, and in 1948, this time with the endorsement of Frede Castberg (a Norwegian jurist), six professors of the University of Bordeaux, five from Columbia University, the American Friends Service Committee, Christian Oftedal (a Norwegian politician) and the American economist Emily Greene Balch. Gandhi was assassinated in January 1948, and since the Foundation doesn’t allow posthumous awards, his ‘case’ ended that year.

The winners in the years he was nominated in were

  • 1937 – Robert Cecil
  • 1938 – Nansen International Office for Refugees
  • 1939 – No winner
  • 1947 – AFSC and Friends Service Council
  • 1948 – No winner

The committee declined to award the prize in 1948 because “there was no suitable living candidate”. This was with reference to Gandhi, who may have received the prize had he not been killed that year. There have also been some discussions on whether the committee could have made an exception for Gandhi and awarded it posthumously, especially since the nominations had arrived a few days before his death and because his death was quite unexpected, too (incidentally, posthumous awards of the Physics Prize were allowed until 1974 if the awardee was alive at the time of nomination). On the other hand, even if these arguments had been taken seriously, they wouldn’t have fetched the Peace Prize for Gandhi – why he wasn’t chosen alludes to a different issue.

The nomination process is essentially one of filtering, and though it differs for each prize, they are all variations of the following: some 3,000 individuals around the world are asked to send in their preliminary nominations, out of which the Nobel Committee filters out and passes on an order of magnitude fewer names to relevant institutions. Finally, the institutions, represented by members on the committee, vote on the day of the prize, with the result being announced immediately after the counting. The person/persons/institutions with the most votes wins the prizes. There is a distinct committee for each of the prizes.

The number of nominators increases every year – to also include the previous year’s winners, for one – so the names of the first winners were essentially sourced from a handful of individuals.

In 1999, Øyvind Tønnesson, then nobelprize.org’s Peace Director, wrote that in Gandhi’s time, the members of the committee weren’t in favour of him for two reasons. First, many of them couldn’t help but blame Gandhi for some of the incidents of violence in India during his supposedly peaceful resistance, going as far as to claim he should’ve known that his actions would precipitate violence – for example, and especially, the Chauri Chaura incident in 1922. Second, as Tønnesson wrote, the members preferred awardees “who could serve as moral and religious symbols in a world threatened by social and ideological conflicts”, and on that note were opposed to the political implications of Gandhi’s movement – especially his role in effectuating the Partition as well as an inability to quell the widespread violence that followed.

Oddly enough, the Nobel Peace Prize is essentially a political prize, and its credibility often can’t be dissociated from the clout of members of the voting committee. In fact, alongside the Literature Prize, the duo has often been the subject of controversy simply by illustrating the linguistic and cultural differences between the Scandinavian electors and their multitudes of candidates. In 1965, U. Thant, then the Secretary-General of the United Nations, was not given the award because the chair of the Nobel Committee then, Gunnar Jahn, was opposed to him despite a majority having favoured Thant for defusing the Cuban missile crisis. One plausible reason that has been advanced, based on Jahn’s track record when he was the chair, was that Thant was only doing his duty and that none of his initiatives to secure peace in the world stepped beyond that ambit – contrary to the actions of the recipients of the 1947 Peace Prize, in Jahn’s opinion. Another incident betrayed how Jahn’s influence was inordinate, too, despite all assurances toward the selection process being democratic: he threatened to resign if Linus Pauling wasn’t awarded the Peace Prize in 1963 while the majority had voted against the chemist.

Another contention has centred on the measures of worthiness. Why can’t the Nobel Prize be awarded to more than three people at a time? Why is the time-difference between the award-winning work being done and the award being given so huge? And on what grounds will each prospective laureate be judged precisely? In the case of the 2013 Nobel Prize for physics, Peter Higgs and Francois Englert were named the recipients for work done 49 years ago, in 1964, even as four others who’d done the same work in that year were ignored. Jorge Luis Borges has been repeatedly overlooked for the Literature Prize with rumours abounding that the committee was not supportive of his conservative political views and because he’d received a prize from Chilean dictator Augusto Pinochet. On the other hand, some of the greatest writers in history have been politically motivated to produce their best works, so in not specifying the bases on which candidates can be rejected, the Nobel Committee makes the Literature Prize an exercise in winning the approval of a group of Scandinavians who may or may not have a sound knowledge of non-European politics.

Meghnad Saha

Meghnad Saha was an astrophysicist known for an eponymous equation that allowed astronomers to determine how much various elements had been ionised in a star based on its temperature. Saha first published his results in 1920, which were built upon by Irving Langmuir in 1923. Ever since, the equation has also been known as the Saha-Langmuir equation. Presumably for this work, Saha was nominated for the Physics Prize by Dehendra Bose and Sisir Mitra in 1930, by Arthur Compton in 1937, by Mitra again in 1939, by Compton again in 1940, and by Mitra again in 1951* and 1955. On February 16, 1956, Saha passed away.

While his equation has become applicable in different high-energy physics contexts, at the time of its conception it was advertised as being for astrophysics. And in that context, however, a shortcoming was spotted among Saha’s assumptions by Ralph Fowler and Edward Arthur Milne in 1923, who then improved the equation to fix the consequences of that shortcoming. Even so, there appeared to have been some misconceptions in the wider astrophysics community, especially in Europe, about who was the originator – not of the equation but of the more important underlying theory, which Saha called the theory of selective radiation pressure. In 1917, he was financially strained and was faced with a disappointing prospect: that the paper he’d send to the Astrophysical Journal detailing the theory couldn’t be printed unless he bore some of the printing costs, which was out of the question. So he had the paper published in the Journal of the Department of Science at Calcutta University instead, “which had no circulation worth mentioning”.

To quote from the Vigyan Prasar archives, which in turn quotes from Saha himself,

“… I might claim to be the originator of the Theory of Selective Radiation Pressure, though on account of discouraging circumstances, I did not pursue the idea to develop it. E.A. Milne apparently read a note of mine in Nature 107, 489 (1921) because in his first paper on the subject ‘Astrophysical Determination of Average of an Excited Calcium Atom’, in Month. Not. R. Ast. Soc., Vol.84, he mentioned my contribution in a footnote, though nobody appears to have noticed. His exact words are: ‘These paragraphs develop ideas originally put forward by Saha’.”

Later in the same article, now quoting one of Saha’s students, Daulat Kothari:

It is pertinent to remark that the ionisation theory was formulated by Saha working by himself in Calcutta, and the paper quoted above was communicated by him from Calcutta to the Philosophical Magazine – incorrect statements to the contrary have sometimes been made. Further papers soon followed. It is not too much to say that the theory of thermal ionisation introduced a new epoch in astrophysics by providing for the first time, on the basis of simple thermodynamic consideration and elementary concepts of the quantum theory, a straight forward interpretation of the different classes of stellar spectra in terms of the physical condition prevailing in the stellar atmospheres.

Had Saha’s work appeared in the Astrophysical Journal in 1917, would his fortunes have been different?

And given that the publishing volume has been growing very fast of late, do the prizes remain representative of the research being conducted? This question may be suppressed by arguing that the prizes are awarded to remarkable research, of the kind that is so momentous that it can’t but see the light of day. At the same time, as in Saha’s case, how much research passes under the radar of the Foundation even if it’s most in need of the kind of visibility the award can bring? And perhaps this is the more important question: of the dozens of nominations the Foundation has received every year for the Nobel Prizes, how many lost out because they published their work in the so-called low impact-factor (i.e. low-visibility) journals?

Satyendra Nath Bose

A third example is of Satyendra Nath Bose. Despite seminal work done in the 1920s, including on a topic that was quickly recognised as being radical and employed by multiple Nobel-Prize-winning scientists later, Bose was never awarded the Physics Prize. Perhaps his greatest honour for performing that work, apart from contributing to the science itself, was the British physicist Paul A.M. Dirac naming a significant class of fundamental particles after him (bosons). When Higgs and Englert were awarded the Physics Prize in 2013 for having conceived the theory behind the Higgs boson in 1964, a cry went up around India calling for Bose to recognised for his work and be awarded a share of the prize that year. The demand was thoroughly misguided because the Bose-Einstein statistics describe all bosons whereas the Higgs Six had focused on one peculiar boson. If anything, Bose could have been awarded the prize separately: he was nominated by Kedareswar Banerji in 1956, by Daulat Kothari in 1959 and by S. Bagchi in 1962.

In contrast, the only other Indian to have won the Physics Prize (before 1964), C.V. Raman, was nominated by no less than 10 people, including Ernest Rutherford, Louis-Victor de Broglie, Johannes Stark and Niels Bohr – all then or future laureates – in the same year. A case of “who nominated whom”, then? Not quite. Another reported flaw of the Physics Prize has been that it has favoured discoveries over inventions, with the 2014 edition being the most recent of a handful of exceptions to that rule. And among those discoveries, the prize’s selectors have consistently preferred experimental proof. That would explain the unseemly gap between Higgs’s and Englert’s papers in 1964 and their awards in 2013 – and it would also explain why Bose never won the prize himself. Bose’s work in statistics helped understand an already observed anomaly but it provided no other new predictions against which his theory could be tested. In 1924, Einstein would make that prediction: of a unique state of matter since called the Bose-Einstein condensate (BEC). The BEC was first experimentally observed in 1995, fetching three physicists the 2001 Physics Prize. That the statistics would also explain the superfluidity of liquid helium-4 was first suggested by Fritz London in 1938 and proved by Lev Landau in 1941 (so winning the 1962 Physics Prize).

However, this is not a defence of Bose not winning the prize as much as a cautionary note: the helpful thing to remember would be that though the Nobel Prizes may rank among the most prestigious distinctions, they have a character of their own, and that human enterprise cannot be divided as Nobel-class and non-Nobel-class, as if it were an aircraft carrier. For in the more than 800 laureates the Nobel Foundation has counted since 1901, the omissions stand out as much as the rest: apart from the few already mentioned, Chinua Achebe, Jocelyn Bell Burnell, Rosalind Franklin, Václav Havel, Lise Meitner, J.R.R. Tolkien and John Updike come to mind. In Bell Burnell’s case, in fact, another man receiving the Physics Prize for a discovery she made only highlights another failure of the Nobel Foundation and has since become an example often invoked to highlight the plight of women in science.

*Also in 1951, Saha nominated Arnold Sommerfeld, a German physicist infamous for being overlooked for a Nobel Prize despite having received more than 80 nominations over many years.

The Wire
September 15, 2015

Gerald Guralnik (1936-2014)

Of the six scientists who came up with the idea of a Higgs boson in the mid-1960s, independently or in collaboration with others, I’ve met all of one. Tom Kibble was at the Institute of Mathematical Science, Chennai, in January 2013 for a conference. He was 80 years old then, and looked quite frail. Every time somebody tapped his shoulder before taking a photograph, he would break into a self-effacing smile. It was clear he was surprised by the attention he was receiving. Kibble thought he didn’t deserve it.

He, Carl Hagen and Gerald Guralnik comprised one of the three teams that conceived the mechanism to explain how some fundamental particles acquired mass in the early universe, over time making possible chemical reactions, stars, life, and many things besides. The other two teams comprised Francois Englert and Robert Brout, and Peter Higgs; Higgs’ name has today become attached to the name of the mechanism. For their work, Higgs and Englert were awarded the 2013 Nobel Prize in physics. Brout couldn’t receive the prize because he had died in 2011. Kibble, Hagen and Guralnik were left out because of limits on how many people the prize could be awarded to at a time.

Fair share of obstacles

On April 26, 2014, Gerald Guralnik died of a heart attack in Rhode Island after delivering a lecture at Brown University. He was 77. In those seven decades, he had become one of the world’s leading experts on theoretical particle physics, which, through the 1960s, was entering its boom time as the world would later discover. In this period, he co-scripted one of the most enduring quests in modern physics research.

Before I started writing this, I visited the Wikipedia page for the Physical Review Letters papers published by the three groups that first called the world’s attention to their findings. In the second line, Peter Higgs is mentioned as having worked with Satyen Bose – undoubtedly the consequence of a grave misapprehension that pervaded India when the 2013 Nobel Prizes were announced. Many believed Satyen Bose had been neglected for his work, but he just hadn’t worked on the Higgs boson, only on the underlying theory that controls the lives and times of all bosons. If such are the facile issues that concern some misguided Indians today, Guralnik tackled more than a fair share in his time.

sb1

For a few years after Kibble, Hagen and Guralnik published their paper, their work wasn’t taken seriously. Guralnik wrote in Huffington Post in August 2012 that, in the summer of 1965, Werner Heisenberg – the originator of the notorious uncertainty principle – thought Guralnik’s ideas were junk. The New York Times wrote that Robert Marshak, a famous theoretical physicist, told Guralnik that if he wished to survive in physics, he “must stop thinking about this sort of problem and move on,” advice that Guralnik “wisely obeyed”. According to Kibble, however, Marshak later admitted that he had been misguided.

Deference over primacy

Nevertheless, some other scientists had starting working on Guralnik & co.’s theories. By the 1970s, Sheldon Glashow, Abdus Salam and Steven Weinberg had succeeded in ironing out many of its inconsistencies and won the Nobel Prize for physics in 1979 for their work… even though it would be 50 more years to prove via experiment that the Higgs mechanism was for real. This is because there was no disputing that the implications of the work of Kibble, Hagen, Guralnik, Higgs, Brout and Englert were revolutionary, at least among those who were willing to accept it.

To this end, the 1979 prizewinners and the ‘Higgs Six’ were aware of and deferential toward the contributions of others to the development of this new theory. In fact, Higgs, who has often wound up being the centre of attention when talk of his eponymous mechanism comes up, has said that he’d rather call it the ABEGHHK’tH mechanism (A denoted Phillip Warren Anderson; ‘tH, Gerardus ‘t Hooft).

But others were less considerate, which didn’t go down well with Guralnik. As Kibble wrote in his obituary in Nature, “Guralnik came to feel that our early paper was often unfairly neglected. He gave talks and wrote papers pointing out our distinctive contribution, of which he was justifiably proud, and in which he was unquestionably the prime mover.” This doesn’t mean he went on to become a sour, old bat, of course, but only that Guralnik seemed to appreciate the gravitas of his work much more than others at the time. When  Higgs and Englert shared the 2013 Nobel Prize in physics, Guralnik told Brown Daily Herald that he was “a little hurt”, but happier for the recognition that his peers – and by extension his work – had received.

(It is, in fact, hard to say if he is as celebrated as Higgs is today, physicists notwithstanding. Such are the consequences of asymmetric recognition, a sort of ceiling effect that silences avant garde advancements until the world is ready to hear them. This is also a complaint I’ve heard from far too many Indian scientists and whose efforts to remedy it I don’t begrudge them even if it only seems like an infantile squabble over primacy.)

In fact, after his work in establishing the theoretical foundations of the Higgs mechanism, which itself is a cornerstone of a unified theory that describes both the electromagnetic and weak nuclear forces of nature, Guralnik proceeded to make a lot of other contributions. He worked on computational approaches to quantum field theory, quantum chromodynamics (i.e., the theory of the strong nuclear force), the application of chaos theory to particle physics, and string theory. His was a versatile genius, in part combative and in part pliant. Rest in peace.

The non-Nobel for Satyen Bose

Photo: The Hindu
Satyen Bose

Last week, as the Nobel Prizes were announced and Peter Higgs and Francois Englert won the highly coveted physics prize, dust was kicked up in India – just as it was in July and then in September 2012 – about how Satyendra Nath Bose had been ‘ignored’. S.N. Bose, in the 1920s, was responsible for formulating the Bose-Einstein statistics with Albert Einstein. These statistics described the physical laws that governed the class of particles that have come to be known, in honour of Bose’s work, as bosons.

The matter of ignoring S.N. Bose, on the other hand, was profoundly baseless, but a sensation realised only by a few in the country. Just because Bose had worked with bosons, many Indians, among them many academicians, felt he ought to have been remembered for his contribution. Only, they conveniently chose to forget, his contribution to the Nobel Prize for physics 2013 was tenuous and, at best, of historical value. I blogged about this for The Copernican science blog on The Hindu, and then wrote an OpEd along the same lines.

From the response I received, however, it seems as if the message is still lost on those who continue to believe Bose is now the poster-scientist for all Indian scientists whose contributions have been ignored by award-committees worldwide. Do we so strongly feel that post-colonial sting of entitlement?

Would you just calm down about the Bose in the boson?

July, 2012 – A Higgs boson-like entity is spotted at the Large Hadron Collider. Indians decry the lack of celebration of S.N. Bose, the Bengali physicist whom bosons are named for.

January, 2013 – The particle found at the LHC is confirmed to be a Higgs boson. Further outcry about S.N. Bose having been forgotten in favor of the “Western” intellects.

October, 2013 – Peter Higgs and Francois Englert win the 2013 Nobel Prize in physics for their work on the Higgs mechanism. Bose is also in the limelight but for the same wrong reasons.

The word ‘boson’ was named for S.N. Bose not because he discovered bosons. It was named so by Paul Dirac, a Nobel Prize winning physicist, to honour Bose’s contribution to the Bose-Einstein statistics, work he did with Albert Einstein on defining the general properties of all bosons.

There are two kinds of particles in nature. Matter particles are the proverbial building blocks. They are the quarks and leptons, together called fermions. Force particles guide the matter particles around and help them interact with each others. They are the photons, W and Z bosons, gluons and the Higgs bosons.

In 1924, Bose and Einstein developed a theory to explain how a group of identical but non-interacting particles may occupy different energy states. They drew up a set of statistical rules and the particles that followed these rules did not obey Pauli’s exclusion principle. All such particles came to be called bosons.

Similarly, in 1926, Enrico Fermi and Paul Dirac came up with a set of rules for particles that did obey Pauli’s exclusion principle. While they worked on this theory independently, Fermi’s results were published first, leading to Dirac calling these particles fermions in the Italian giant’s honour.

So there. S.N. Bose – good man, great contribution – but he has nothing to do with the Higgs boson in particular except that this particle is a boson. What’s being celebrated about the Higgs is not being done in denial of Bose’s contributions because there is nothing to deny. The physics behind what’s going on now has more to do with how the hunt for one particular boson is shaping modern particle physics. Face it, the world of science has moved on.

If anything, I liked this Outlook article (except the last line) published a day after the momentous CERN announcements on July 4 last year. It brought S.N. Bose back into the limelight at a time when few of us in the country had (or have) the scientific temperament to acknowledge such contributions from history and, simply, recognise and preserve it for what it is: homage.

Indeed, some Indians seem to harbour a maleficient sense of entitlement that extends to calls demanding the ‘B’ in ‘bosons’ be capitalised. Rolf Dieter-Heuer, Director General of CERN, responded to this while at a meeting in Kolkata in September 2012: “I was asked yesterday why the boson was not capped. In Bose’s own city today, we have capped the Boson. I, in fact, always cap the Boson. But today, we changed all our CERN slides to cap Bosons.”

Another example of misguided entitlement was some Indian physicists saying that ‘naming the Higgs particle after Bose is an honour bigger than the Nobel Prize itself’. If you’re looking for honour of Indian origin in the Nobel Prize for physics in 2013, look to Indian scientists who worked on the collider.

Look to contributions from the Tata Institute of Fundamental Research and the Institute of Mathematical Sciences. Look to the superconducting magnets technology that India provided. Look to people like Rohini GodboleKajari Mazumdar (see slide 4), and Ashoke Sen.

But if all you want to do is cling to the vestiges of a legacy you helped fade, then you’re also doomed, benumbed to the sting of being denied the Nobel Prizes only because you’re not producing and retaining Nobel-class thinkers anymore.

(This blog post first appeared at The Copernican on October 10, 2013.)

The Indian Bose in the universal boson

Read this article.

Do you think Indians are harping too much about the lack of mention of Satyendra Nath Bose’s name in the media coverage of the CERN announcement last week? The articles in Hindustan Times and Economic Times seemed to be taking things too far with anthropological analyses that have nothing to do with Bose’s work. The boson was named so around 1945 by the great Paul Dirac as a commemoration of Bose’s work with Einstein. Much has happened since; why would we want to celebrate the Bose in the boson again and again?

Dr. Satyendra Nath Bose

The stage now belongs to the ATLAS and the CMS collaborations, and to Higgs, Kibble, Englert, Brout, Guralnik, and Hagen, and to physics itself as a triumph of worldwide cooperation in the face of many problems. Smarting because an Indian’s mention was forgotten is jejune. Then again, this is mostly the layman and the media, because the physicists I met last week seemed to fully understand Bose’s contribution to the field itself instead of count the frequency of his name’s mention.

Priyamvada Natarajan, as she writes in the Hindustan Times, is wrong (and the Economic Times article’s heading is just irritating). That Bose is not a household name like Einstein’s is is not because of post-colonialism – the exceptions are abundant enough to warrant inclusion – but because we place too much faith in a name instead of remembering what the man behind the name did for physics.