The passive is political

If Saruman is the stupid shit people say, I have often found Grima Wormtongue is the use of the passive voice. To the uninitiated: Wormtongue was a slimy fellow on Saruman’s side in The Lord of the Rings: The Two Towers. He was much, much less powerful compared to Saruman, but fed the wizard’s ego, lubricated the passage of his dubious ideas into action, and slipped poison into the ears and minds of those who would listen to him.

The passive is useful to attribute to others something you would rather not be the originator of yourself, but which you would like to be true. Or to invoke facts without also invoking the dubious credentials of the person or circumstance that birthed it. Or to dress up your ignorance in the ‘clinical-speak’ that the scientific literature prizes. Or to admit fewer avenues of disagreement. Or, in its most insidious form, to suggest that the message matters a lot more than the context.

Yes, sometimes the passive voice is warranted – often, in my experience, when the point is to maintain sharp focus on a particular idea, concept, etc. in a larger article. This condition is important: the writer or speaker needs to justify the use of the passive voice, in keeping with the deviation from normal that it is.

Of course, you could contend that the creator’s message is the creator’s own, and that they do get to craft it the way they wish. I would contend in return that this is absolutely true – but the question of passive v. active voice arises more pronouncedly in the matter of how the creator’s audience is directed to perceive that message. That is, the creator can use whatever voice they wish, but using one over the other (obviously) changes the meaning and, more importantly, the context they wish the reader to assume.

For example, writing “The ball was thrown” is both a statement that the ball was thrown and an indication to the reader that the identity of the thrower is not relevant.

And because of the specific ways in which the passive voice is bad, the creator effectively puts themselves in a position where the audience could accuse them of deliberately eliding important information. In fact, the creator would open themselves up to this line of inquiry, if not interrogation, even if the line is a dead-end or if the creator actually doesn’t deserve to be accused.

Even more specifically, the use of the passive voice is a loaded affair. I have encountered only a very small number of people writing in the mainstream press who actively shun the passive voice, in favour of the active, or at least have good reasons to adopt the passive. Most writers frequently adopt the passive – and passively so – without acknowledging that this voice can render the text in political shades even if the writer didn’t intend it.

I encountered an opinion of remarkable asininity a few minutes ago, which prompted this little note, and which also serves to illustrate my message.

“One aspect that needs to be considered,” “it is sometimes said,” “remain deprived of sex,” “it is believed that in June alone”. In a conversation with The Soufflé some two years ago, about why middle-aged and older men – those not of our generation, so to speak – harbour so many foolish ideas, he said one reason has to be that when these men sit in their living rooms and enter into lengthy monologues about what they believe, no one challenges them.

Of course, in an overwhelmingly patriarchal society, older men will only brook fewer challenges to their authority (or none at all). I think the passive voice is a syntactic choice that together with the fondness for it removes yet another challenge – one unique to the beautiful act of writing – that a creator may encounter during the act of creation, or at least which facilitates a way to create something that otherwise may not have survived the very act of creation.

In Katju’s case, for example, the second third instances of the passive voice could have given him pause. “It is sometimes said” in the active becomes “X has said” or “X says”, subsequently leading to the question of who ‘X’ is and whether their claim is still right, relevant and/or good.

As I mentioned earlier, the passive voice serves among other reasons to preclude the points or counts on which a reader may raise objections. However, writing – one way or another – is an act of decentralising or at least sharing power, the power inherent in the creator’s knowledge that is now available to others as well, more so in the internet age. Fundamentally, to write is to open the gates through which flow the opportunities for your readers to make decisions based on different bits and kinds of information. And in this exercise, to bar some of these gates can only be self-defeating.

Scientists drafting technical manuscripts – the documents I encounter most often that are brimming with the passive voice – may see less value in writing “X designed the experiment to do Y” than “the experiment was designed to go Y”. But I can think of no reason writing in the active would diminish the manuscript’s credentials, even if it may not serve to improve them either – at least not 99% of the time. I do think that 1% of the time, using the active voice by way of habit could help improve the way we do science, for example by allowing other researchers conducting meta-analyses to understand the role of human actions in the performance of an experiment or, perhaps, to discern the gender, age or qualification of those researchers most often involved in designing experiments v. performing them.

Then again, science is a decidedly, and unfortunately, asocial affair, and the ‘amount’ of behavioural change required to have scientists regularly privilege the active over the passive is high.

This shouldn’t be the case vis-à-vis writers writing for the mainstream press – a domain in which the social matters just as much as the scientific, but often much more. Here, to recall the famous words of Marshall McLuhan, the actor is often the act (perhaps simply reflecting our times – in which to be a passive bystander to acts of violence is to condone the violence itself).

And when Markandey Katju, no less than a former judge of the Supreme Court of India, invokes claims while suppressing their provenance, it quickly becomes a political choice. It is as if (I think) he is thinking, “I don’t care if this is true or not; I must find a way to make this point so that I can then go on to link rapes to unemployment, especially the unemployment brought on by the BJP’s decisions.”

I concede that the act of writing presents a weak challenge – but it is a challenge nonetheless, and which you can strengthen through habituation.

Why scientists should read more

The amount of communicative effort to describe the fact of a ball being thrown is vanishingly low. It’s as simple as saying, “X threw the ball.” It takes a bit more effort to describe how an internal combustion engine works – especially if you’re writing for readers who have no idea how thermodynamics works. However, if you spend enough time, you can still completely describe it without compromising on any details.

Things start to get more difficult when you try to explain, for example, how webpages are loaded in your browser: because the technology is more complicated and you often need to talk about electric signals and logical computations – entities that you can’t directly see. You really start to max out when you try to describe everything that goes into launching a probe from Earth and landing it on a comet because, among other reasons, it brings together advanced ideas in a large number of fields.

At this point, you feel ambitious and you turn your attention to quantum technologies – only to realise you’ve crossed a threshold into a completely different realm of communication, a realm in which you need to pick between telling the whole story and risk being (wildly) misunderstood OR swallowing some details and making sure you’re entirely understood.

Last year, a friend and I spent dozens of hours writing a 1,800-word article explaining the Aharonov-Bohm quantum interference effect. We struggled so much because understanding this effect – in which electrons are affected by electromagnetic fields that aren’t there – required us to understand the wave-function, a purely mathematical object that describes real-world phenomena, like the behaviour of some subatomic particles, and mathematical-physical processes like non-Abelian transformations. Thankfully my friend was a physicist, a string theorist for added measure; but while this meant that I could understand what was going on, we spent a considerable amount of time negotiating the right combination of metaphors to communicate what we wanted to communicate.

However, I’m even more grateful in hindsight that my friend was a physicist who understood the need to not exhaustively include details. This need manifests in two important ways. The first is the simpler, grammatical way, in which we construct increasingly involved meanings using a combination of subjects, objects, referrers, referents, verbs, adverbs, prepositions, gerunds, etc. The second way is more specific to science communication: in which the communicator actively selects a level of preexisting knowledge on the reader’s part – say, high-school education at an English-medium institution – and simplifies the slightly more complicated stuff while using approximations, metaphors and allusions to reach for the mind-boggling.

Think of it like building an F1 racecar. It’s kinda difficult if you already have the engine, some components to transfer kinetic energy through the car and a can of petrol. It’s just ridiculous if you need to start with mining iron ore, extracting oil and preparing a business case to conduct televisable racing sports. In the second case, you’re better off describing what you’re trying to do to the caveman next to you using science fiction, maybe poetry. The problem is that to really help an undergraduate student of mechanical engineering make sense of, say, the Casimir effect, I’d rather say:

According to quantum mechanics, a vacuum isn’t completely empty; rather, it’s filled with quantum fluctuations. For example, if you take two uncharged plates and bring them together in a vacuum, only quantum fluctuations with wavelengths shorter than the distance between the plates can squeeze between them. Outside the plates, however, fluctuations of all wavelengths can fit. The energy outside will be greater than inside, resulting in a net force that pushes the plates together.

‘Quantum Atmospheres’ May Reveal Secrets of Matter, Quanta, September 2018

I wouldn’t say the following even though it’s much less wrong:

The Casimir effect can be understood by the idea that the presence of conducting metals and dielectrics alters the vacuum expectation value of the energy of the second-quantised electromagnetic field. Since the value of this energy depends on the shapes and positions of the conductors and dielectrics, the Casimir effect manifests itself as a force between such objects.

Casimir effect, Wikipedia

Put differently, the purpose of communication is to be understood – not learnt. And as I’m learning these days, while helping virologists compose articles on the novel coronavirus and convincing physicists that comparing the Higgs field to molasses isn’t wrong, this difference isn’t common knowledge at all. More importantly, I’m starting to think that my physicist-friend who really got this difference did so because he reads a lot. He’s a veritable devourer of texts. So he knows it’s okay – and crucially why it’s okay – to skip some details.

I’m half-enraged when really smart scientists just don’t get this, and accuse editors (like me) of trying instead to misrepresent their work. (A group that’s slightly less frustrating consists of authors who list their arguments in one paragraph after another, without any thought for the article’s structure and – more broadly – recognising the importance of telling a story. Even if you’re reviewing a book or critiquing a play, it’s important to tell a story about the thing you’re writing about, and not simply enumerate your points.)

To them – which is all of them because those who think they know the difference but really don’t aren’t going to acknowledge the need to bridge the difference, and those who really know the difference are going to continue reading anyway – I say: I acknowledge that imploring people to communicate science more without reading more is fallacious, so read more, especially novels and creative non-fiction, and stories that don’t just tell stories but show you how we make and remember meaning, how we memorialise human agency, how memory works (or doesn’t), and where knowledge ends and wisdom begins.

There’s a similar problem I’ve faced when working with people for whom English isn’t the first language. Recently, a person used to reading and composing articles in the passive voice was livid after I’d changed numerous sentences in the article they’d submitted to the active voice. They really didn’t know why writing, and reading, in the active voice is better because they hadn’t ever had to use English for anything other than writing and reading scientific papers, where the passive voice is par for the course.

I had a bigger falling out with another author because I hadn’t been able to perfectly understand the point they were trying to make, in sentences of broken English, and used what I could infer to patch them up – except I was told I’d got most of them wrong. And they couldn’t implement my suggestions either because they couldn’t understand my broken Hindi.

These are people that I can’t ask to read more. The Wire and The Wire Science publish in English but, despite my (admittedly inflated) view of how good these publications are, I’ve no reason to expect anyone to learn a new language because they wish to communicate their ideas to a large audience. That’s a bigger beast of a problem, with tentacles snaking through colonialism, linguistic chauvinism, regional identities, even ideologies (like mine – to make no attempts to act on instructions, requests, etc. issued in Hindi even if I understand the statement). But at the same time there’s often too much lost in translation – so much so that (speaking from my experience in the last five years) 50% of all submissions written by authors for whom English isn’t the first language don’t go on to get published, even if it was possible for either party to glimpse during the editing process that they had a fascinating idea on their hands.

And to me, this is quite disappointing because one of my goals is to publish a more diverse group of writers, especially from parts of the country underrepresented thus far in the national media landscape. Then again, I acknowledge that this status quo axiomatically charges us to ensure there are independent media outlets with science sections and publishing in as many languages as we need. A monumental task as things currently stand, yes, but nonetheless, we remain charged.

Caste, and science’s notability threshold

A webinar by The Life of Science on the construct of the ‘scientific genius’ just concluded, with Gita Chadha and Shalini Mahadev, a PhD scholar at HCU, as panellists. It was an hour long and I learnt a lot in this short time, which shouldn’t be surprising because, more broadly, we often don’t stop to question the conduct of science itself, how it’s done, who does it, their privileges and expectations, etc., and limit ourselves to the outcomes of scientific practice alone. The Life of Science is one of my favourite publications for making questions like these part of its core work (and a tiny bit also because it’s run by two good friends).

I imagine the organisers will upload a recording of the conversation at some point (edit: hopefully by Monday, says Nandita Jayaraj); they’ve also offered to collect the answers to many questions that went unanswered, only for lack of time, and publish them as an article. This was a generous offer and I’m quite looking forward to that.

I did have yet another question but I decided against asking it when, towards the end of the session, the organisers made some attempts to get me to answer a question about the media’s role in constructing the scientific genius, and I decided I’d work my question into what I could say. However, Nandita Jayaraj, one of The Life of Science‘s founders, ended up answering it to save time – and did so better than I could have. This being the case, I figured I’d blog my response.

The question itself that I’d planned to ask was this, addressed to Gita Chadha: “I’m confused why many Indians think so much of the Nobel Prizes. Do you think the Nobel Prizes in particular have affected the perception of ‘genius’?”

This query should be familiar to any journalist who, come October, is required to cover the Nobel Prize announcements for that year. When I started off at The Hindu in 2012, I’d cover these announcements with glee; I also remember The Hindu would carry the notes of the laureates’ accomplishments, published by the Nobel Foundation, in full on its famous science and tech. page the following day. At first I thought – and was told by some other journalists as well – that these prizes have the audience’s attention, so the announcements are in effect a chance to discuss science with the privilege of an interested audience, which is admittedly quite unusual in India.

However, today, it’s clear to me that the Nobel Prizes are deeply flawed in more ways than one, and if journalists are using them as an opportunity to discuss science – it’s really not worth it. There are many other ways to cover science than on the back of a set of prizes that simply augments – instead of in any way compensating for – a non-ideal scientific enterprise. So when we celebrate the Nobel Prizes, we simply valorise the enterprise and its many structural deformities, not the least of which – in the Indian context – is the fact that it’s dominated by upper-caste men, mostly Brahmins, and riddled with hurdles for scholars from marginalised groups.

Brahmins are so good at science not because they’re particularly gifted but because they’re the only ones who seem to have the opportunity – a fact that Shalini elucidated very clearly when she recounted her experiences as a Dalit woman in science, especially when she said: “My genius is not going to be tested. The sciences have written me off.” The Brahmins’ domination of the scientific workforce has a cascading set of effects that we then render normal simply because we can’t conceive of a different way science can be, including sparing the Brahmin genius of scrutiny, as is the privilege of all geniuses.

(At a seminar last year, some speakers on stage had just discussed the historical roots of India being so bad at experimental physics and had taken a break. Then, I overheard an audience member tell his friend that while it’s well and good to debate what we can and can’t pin on Jawaharlal Nehru, it’s amusing that Brahmin experts will have discussions about Brahmin physicists without either party considering if it isn’t their caste sensibility that prevents them from getting their hands dirty!)

The other way the Nobel Prizes are a bad for journalists indicts the norms of journalism itself. As I recently described vis-à-vis ‘journalistic entropy’, there is a sort of default expectation of reporters from the editorial side to cover the Nobel Prize announcements for their implicit newsworthiness instead of thinking about whether they should matter. I find such arguments about chronicling events without participating in them to be bullshit, especially when as a Brahmin I’m already part of Indian journalism’s caste problem.

Instead, I prefer to ask these questions, and answer them honestly in terms of the editorial policies I have the privilege to influence, so that I and others don’t end up advancing the injustices that the Nobel Prizes stand for. This is quite akin to my, and others’, older argument that journalists shouldn’t blindly offer their enterprise up as a platform for majoritarian politicians to hijack and use as their bullshit megaphones. But if journalists don’t recast their role in society accordingly, they – we – will simply continue to celebrate the Nobel laureates, and by proxy the social and political conditions that allowed the laureates in particular to succeed instead of others, and which ultimately feed into the Nobel Prizes’ arbitrarily defined ‘prestige’.

Note that the Nobel Prizes here are the perfect examples, but only examples nonetheless, to illustrate a wider point about the relationship between scientific eminence and journalistic notability. The Wire for example has a notability threshold: we’re a national news site, which means we don’t cover local events and we need to ensure what we do cover is of national relevance. As a corollary, such gatekeeping quietly implies that if we feature the work of a scientist, then that scientist must be a particularly successful one, a nationally relevant one.

And when we keep featuring and quoting upper-caste male scientists, we further the impression that only upper-caste male scientists can be good at science. Nothing says more about the extent to which the mainstream media has allowed this phenomenon to dominate our lives than the fact of The Life of Science‘s existence.

It would be foolish to think that journalistic notability and scientific eminence aren’t linked; as Gita Chadha clarified at the outset, one part of the ‘genius’ construct in Western modernity is the inevitability of eminence. So journalists need to work harder to identify and feature other scientists by redefining their notability thresholds – even as scientists and science administrators need to rejig their sense of the origins and influence of eminence in science’s practice. That Shalini thinks her genius “won’t be tested” is a brutal clarification of the shape and form of the problem.

Clarity and soundness

I feel a lot of non-science editors just switch off when they read science stuff.

A friend told me this earlier today, during yet another conversation about how many of the editorial issues that assail science and health journalism have become more pronounced during the pandemic (by dint of the pandemic being a science and health ‘event’). Even earlier, editors would switch off whenever they’d read science news, but then the news would usually be about a new study discussing something coffee could or couldn’t do to the heart.

While that’s worrying, the news was seldom immediately harmful, and lethal even more rarely. In a pandemic, on the other hand, bullshit that makes it to print hurts in two distinct ways: by making things harder for good health journalists to get through to readers with the right information and emphases, and of course by encouraging readers to do things that might harm them.

But does this mean editors need to know the ins and outs of the subject on which they’re publishing articles? This might seem like a silly question to ask but it’s often the reality in small newsrooms in India, where one editor is typically in charge of three or four beats at a time. And setting aside the argument that this arrangement is a product of complacency and not taking science news seriously more than resource constraints, it’s not necessarily a bad thing either.

For example, a political editor may not be able to publish incisive articles on, say, developments in the art world, but they could still help by identifying reliable news sources and tap their network to commission the right reporters. And if the organisation spends a lot more time covering political news, and with more depth, this arrangement is arguably preferable from a business standpoint.

Of course, such a setup is bound to be error-prone, but my contention is that it doesn’t deserve to be written off either, especially this year – when more than a few news publishers suddenly found themselves in the middle of a pandemic even as they couldn’t hire a health editor because their revenues were on the decline.

For their part, then, publishers can help minimise errors by being clear about what editors are expected to do. For example, a newsroom can’t possibly do a great job of covering science developments in the country without a science editor; axiomatically, non-science editors can only be expected to do a superficial job of standing in for a science editor.

This said, the question still stands: What are editors to do specifically, especially those suddenly faced with the need to cover a topic they’re only superficially familiar with? The answer to this question is important not just to help editors but also to maintain accountability. For example, though I’ve seldom covered health stories in the past, I also don’t get to throw my hands up as The Wire‘s science, health and environment editor when I publish a faulty story about, say, COVID-19. It is a bit of a ‘damned if you do, damned if you don’t’ situation, but it’s not entirely unfair either: it’s the pandemic, and The Wire can’t not cover it!

In these circumstances, I’ve found one particular way to mitigate the risk of damnation, so to speak, quite effective. I recently edited an article in which the language of a paragraph seemed off to me because it wasn’t clear what the author was trying to say, and I kept pushing him to clarify. Finally, after 14 emails, we realised he had made a mistake in the calculations, and we dropped that part of the article. More broadly, I’ve found that nine times out of ten, even pushbacks on editorial grounds can help identify and resolve technical issues. If I think the underlying argument has not been explained clearly enough, I send a submission back even if it is scientifically accurate or whatever.

Now, I’m not sure how robust this relationship is in the larger scheme of things. For example, this ‘mechanism’ will obviously fail when clarity of articulation and soundness of argument are not related, such as in the case of authors for whom English is a second language. For another, the omnipresent – and omnipotent – confounding factor known as unknown unknowns could keep me from understanding an argument even when it is well-made, thus putting me at risk of turning down good articles simply because I’m too dense or ignorant.

But to be honest, these risks are quite affordable when the choice is between damnation for an article I can explain and damnation for an article I can’t. I can (and do) improve the filter’s specificity/sensitivity 😄 by reading widely myself, to become less ignorant, and by asking authors to include a brief of 100-150 words in their emails clarifying, among other things, their article’s intended effect on the reader. And fortuitously, when authors are pushed to be clearer about the point they’re making, it seems they also tend to reflect on the parts of their reasoning that lie beyond the language itself.

The virus and the government

In December 2014, public health researchers and activists gathered at a public forum in Cambridge, Massachusetts, to discuss how our perception of diseases and their causative pathogens influences our ideas of what we can and can’t do to fight them. According to a report published in The Harvard Gazette:

The forum prompted serious reflection about structural inequalities and how public perceptions get shaped, which often leads to how resources are directed. “The cost of believing that something is so lethal and fatal is significant,” [Paul] Farmer said.

[Evelynn] Hammonds drew attention to how perceptions of risk about Ebola had been shaped mostly through the media, while noting that epidemics “pull the covers off” the ways that the poor, vulnerable, and sick are perceived.

These statements highlight the importance of a free press with a spine during a pandemic – instead of one that bends to the state’s will as well as doesn’t respect the demands of good health journalism while purporting to practice it.

We’ve been seeing how pliant journalists, especially on news channels like India Today and Republic and in the newsrooms of digital outlets like Swarajya and OpIndia, try so hard so often to defend the government’s claims about doing a good job of controlling the COVID-19 epidemic in India. As a result, they’ve frequently participated – willingly or otherwise – in creating the impression that a) the virus is deadly, and b) all Muslims are deadly.

Neither of course is true. But while political journalists, who in India have generally been quite influential, have helped disabuse people of the latter notion, the former has attracted fewer rebuttals principally because the few good health journalists and the vocal scientists operating in the country are already overworked thanks to the government’s decoy acts on other fronts.

As things stand, beware anyone who says the novel coronavirus is deadly if only because a) all signs indicate that it’s far less damaging to human society than tuberculosis is every year, and b) it’s an awfully powerful excuse that allows the government to give up and simply blame the virus for a devastation that – oddly enough – seems to affect the poor, the disabled and the marginalised too far more than the law of large numbers can account for.

Dehumanising language during an outbreak

It appears the SARS-CoV-2 coronavirus has begun local transmission in India, i.e. infecting more people within the country instead of each new patient having recently travelled to an already affected country. The advent of local transmission is an important event in the lexicon of epidemics and pandemics because, at least until 2009, that’s how the WHO differentiated between the two.

As of today, the virus has become locally transmissible in the world’s two most populous countries. At this juncture, pretty much everyone expects the number of cases within India to only increase, and as it does, the public healthcare system won’t be the only one under pressure. Reporters and editors will be too, and they’re likely to be more stressed on one front: their readers.

For example, over the course of March 4, the following sentences appeared in various news reports of the coronavirus:

The Italian man infected 16 Italians, his wife and an Indian driver.

The infected techie boarded a bus to Hyderabad from Bengaluru and jeopardised the safety of his co-passengers.

Two new suspected coronavirus cases have been reported in Hyderabad.

All 28 cases of infection are being monitored, the health ministry has said.

Quite a few people on Twitter, and likely in other fora, commented that these lines exemplify the sort of insensitivity towards patients that dehumanises them, elides their agency and casts them as perpetrators – of the transmission of a disease – and which, perhaps given enough time and reception, could engender apathy and even animosity towards the poorer sick.

The problem words seem to include ‘cases’, ‘burden’ and ‘infected’. But are they a problem, really? I ask because though I understand the complaints, I think they’re missing an important detail.

Referring to people as if they were objects only furthers their impotency in a medical care setup in which doctors can’t be questioned and the rationale for diagnoses is frequently secreted – both conditions ripe for exploitation. At the same time, the public part of this system has to deal with a case load it is barely equipped for and whose workers are underpaid relative to their counterparts in the private sector.

As a result, a doctor seeing 10- or 20-times as many patients as they’ve been trained and supported to will inevitably precipitate some amount of dehumanisation, and it could in fact help medical workers cope with circumstances in which they’re doing all they can to help but the patient suffers anyway. So dehumanisation is not always bad.

Second, and perhaps more importantly, the word ‘dehumanise’ and the attitude ‘dehumanise’ can and often do differ. For example, Union home minister Amit Shah calling Bangladeshi immigrants “termites” is not the same as a high-ranking doctor referring to his patient in terms of their disease, and this doctor is not the same as an overworked nurse referring to the people in her care as ‘cases’. The last two examples are progressively more forgivable because their use of the English language is more opportunistic, and the nurse in the last example may not intentionally dehumanise their patients if they knew what their words meant.

(The doctor didn’t: his example is based on a true story.)

Problematic attitudes often manifest most prominently as problematic words and labels but the use of a word alone wouldn’t imply a specific attitude in a country that has always had an uneasy relationship with the English language. Reporters and editors who carefully avoid potentially debilitating language as well as those who carefully use such language are both in the minority in India. Instead, my experiences as a journalist over eight years suggest the majority is composed of people who don’t know the language is a problem, who don’t have the time, energy and/or freedom to think about casual dehumanisation, and who don’t deserve to be blamed for something they don’t know they’re doing.

But by fixating on just words, and not the world of problems that gives rise to them, we risk interrogating and blaming the wrong causes. It would be fairer to expect journalists of, say, the The Guardian or the Washington Post to contemplate the relationship between language and thought if only because Western society harbours a deeper understanding of the healthcare system it originated, and exported to other parts of the world with its idiosyncrasies, and because native English speakers are likelier to properly understand the relationship between a word, its roots and its use in conversation.

On the other hand, non-native users of English – particularly non-fluent users – have no option but to use the words ‘case’, ‘burden’ and ‘infected’. The might actually prefer other words if:

  • They knew that (and/or had to accommodate their readers’ pickiness for whether) the word they used meant more than what they thought it did, or
  • They knew alternative words existed and were equally valid, or
  • They could confidently differentiate between a technical term and its most historically, socially, culturally and/or technically appropriate synonym.

But as it happens, these conditions are seldom met. In India, English is mostly reserved for communication; it’s not the language of thought for most people, especially most journalists, and certainly doesn’t hold anything more than a shard of mirror-glass to our societies and their social attitudes as they pertain to jargon. So as such, pointing to a reporter and asking them to say ‘persons infected with coronavirus’ instead of ‘case’ will magically reveal neither the difference between ‘case’ or ‘infected’ the scientific terms and ‘case’ or ‘infected’ the pejoratives nor the negotiated relationship between the use of ‘case’ and dehumanisation. And without elucidating the full breadth of these relationships, there is no way either doctors or reporters are going to modify their language simply because they were asked to – nor will their doing so, on the off chance, strike at the real threats.

On the other hand, there is bound to be an equally valid problem in terms of those who know how ‘case’ and ‘infected’ can be misused and who regularly read news reports whose use of English may or may not intend to dehumanise. Considering the strong possibility that the author may not know they’re using dehumanising language and are unlikely to be persuaded to write differently, those in the know have a corresponding responsibility to accommodate what is typically a case of the unknown unknowns and not ignorance or incompetence, and almost surely not malice.

This is also why I said reporters and editors might be stressed by their readers, rather their perspectives, and not on count of their language.


A final point: Harsh Vardhan, the Union health minister and utterer of the words “The Italian man infected 16 Italians”, and Amit Shah belong to the same party – a party that has habitually dehumanised Muslims, Dalits and immigrants as part of its nationalistic, xenophobic and communal narratives. More recently, the same party from its place at the Centre suspected a prominent research lab of weaponising the Nipah virus with help from foreign funds, and used this far-fetched possibility as an excuse to terminate the lab’s FCRA license.

So when Vardhan says ‘infected’, I reflexively, and nervously, double-check his statement for signs of ambiguity. I’m also anxious that if more Italian nationals touring India are infected by SARS-CoV-2 and the public healthcare system slips up on control measures, a wave of anti-Italian sentiment could follow.

A meeting with the PSA’s office

The Office of the Principal Scientific Adviser (PSA) organised a meeting with science communicators from around India on January 27, in New Delhi. Some of my notes from the meeting are displayed below, published with three caveats.

First, my notes are not to be treated as the minutes of the meeting; I only jotted down what I personally found interesting. Some 75% of the words in there are part of suggestions and recommendations advanced by different people; the remainder are, broadly, observations. They appear in no discernible order not because I jumbled them up but because participants offered both kinds of statements throughout. The meeting itself lasted for seven or so hours (including breaks for lunch and tea), so every single statement was also accompanied by extensive discussion. Finally, I have temporarily withheld some portions because I plan to discuss them in additional blog posts.

Second, the meeting followed the Chatham House Rules, which means I am not at liberty to attribute statements uttered during the course of the meeting to their human originators. I have also not identified my own words where possible not because I want to hide but because, by virtue of these ideas appearing on my blog, I take full responsibility (but not authorship) for their publicisation.

Third, though the meeting was organised by the Office of the PSA, its members were not the only ones of the government present at the meeting. Representatives of some other government-affiliated bodies were also in attendance. So statements obviously uttered by a government official – if any do come across that way – are not necessarily attributable to members of the Office of the PSA.


“We invest a lot in science, we don’t use it imaginatively enough.”

Three major science related issues:

  1. Climate change
  2. Dramatic consequences of our growth on biodiversity
  3. B/c of these two, how one issues addresses sustainable development
  • Different roles for journalists within and without the government
  • Meeting is about what each one of us can do — but what is that?
  • Each one of us can say “I could do better if only you could better empathise with what I do”
  • Need for skill-sharing events for science journalists/communicators
  • CSIR’s National Institute of Science Communication and Information Resources has a centre for science and media relations, and a national science library
  • Indian Council of Medical Research has a science communication policy but all press releases need to be okayed by health minister!
  • Knowledge making is wrapped up in identity
  • Regional language communicators don’t have access to press releases, etc. in regional languages, nor access to translators
  • Department of Science and Technology and IIT Kanpur working on machine-translations of scientific content of Wikipedia
  • Netherlands Science Foundation published a book compiling public responses to question ‘what do you think of science?’
  • In the process of teaching kids science, you can also get them to perform science and use the data (e.g. mapping nematode density in soil using Foldscope)
  • Slack group for science communicators, channels divided by topic
  • Leaders of scientific bodies need to be trained on how to deal with journalists, how to respond in interviews, etc.
  • Indian Space Research Organisation, Defence R&D Organisation and Department of Atomic Energy need to not be so shut off! What are they hiding? If nothing to hide, why aren’t they reachable?
  • Need structural reforms for institutional research outreach — can’t bank on skills, initiative of individual science communicators at institutes to ensure effective outreach
  • Need to decentralise PR efforts at institutions
  • People trained in science communication need to find jobs/employment
  • Pieces shortlisted for AWSAR award could be put on a CC BY-ND license so news publications can republish them en masse without edits
  • Please hold meetings like this at periodic intervals, let this not be a one-time thing
  • Issues with covering science: Lack of investment, few people covering science, not enough training opportunities, not enough science communication research in India
  • Need local meet-ups between journalists and scientists to get to know each other, facilitated by the government
  • Outreachers needn’t have to be highly regarded scientists, even grad students can give talks — and kids will come to listen
  • Twitter is an elite platform — science communicators that need to stay in touch need to do more; most science communicators don’t know each other!
  • Can we host one edition of the World Conference of Science Journalists in India?
  • What happened to the Indian Science Writers’ Association?
  • Today the mind is not without fear! The political climate is dire, people can’t freely speak their minds without fear of reprisal — only obvious that this should affect science journalism also
  • ISRO is a darling of the media, the government and the masses but has shit outreach! Rs 10,000 crore being spent on Gaganyaan but the amount of info on it in the public domain is poop.
  • CSIR’s Institute of Genomics and Integrative Biology is very open and accessible, director needs to be kept in the loop about some press interaction but that’s it; perhaps the same template can be recreated in other institutes?
  • Outreach at scientific institutions is a matter of trust: if director doesn’t trust scientists to speak up without permission, and if PR people don’t respond to emails or phone calls, impression is that there is no trust within the institute as well as that the institute would like journalists to not be curious
  • People trained in science communication (informally also) need a place to practice their newfound skills.
  • Private sector industry is in the blindspot of journalists
  • People can more easily relate to lived experiences; aesthetically pleasing (beautiful-looking) stories are important
  • Most people have not had access to the tools of science, we need to build more affordable and accessible tools
  • Don’t attribute to malfeasance what can be attributed to not paying attention, incompetence, etc.
  • Journalistic deep-dives are good but lack of resources to undertake, not many publications do it either, except maybe The Wire and Caravan; can science communicators and the government set up a longform mag together?
  • Create a national mentorship network where contact details of ‘mentors’ are shared and mentees enrolled in the programme can ask them questions, seek guidance, etc.
  • Consider setting up a ‘science media centre’ — but can existing and functional models in Australia and the UK be ported to India without facing any issues?
  • Entities like IndiaBioscience could handle biology research outreach for scientific institutes in, say, the South India region or Bangalore region with some support from the government. That would be better than an SMC-from-scratch.
  • Consider including science communication in government’s new draft Scientific Social Responsibility policy and other S&T innovation policies
  • Allocate a fixed portion of funding for research for public outreach and communication (such as 2%)
  • Need more formal recognition for science communication researchers within scientific institutions; members currently stuck in a limbo between outreach office and scientists, makes it difficult to acquire funds for work
  • Support individual citizen science initiatives
  • Need better distinction between outreach groups and press offices — we don’t have a good press office anywhere in the country! Press officers encourage journalistic activity, don’t just promote institute’s virtues but look out for the institute as situated in the country’s overall science and society landscape
  • Any plans to undertake similar deliberations on philosophy of science (including culture of research, ethics and moral responsibilities)?
  • Scientific institutions could consider hosting journalists for one day a month to get to know each other
  • What’s in it for the scientist to speak to a journalist about their work? Need stronger incentives — journalists can provide some of that by establishing trust with the scientist, but can journalists alone provide incentives? Is it even their responsibility?
  • Consider conducting a ‘scientific temper survey’ to understand science literacy as well as people’s perceptions of science — could help government formulate better policies, and communicators and journalists to better understand what exactly their challenges are
  • Need to formulate specific guidelines for science communication units at scientific research institutions as well as for funding agencies
  • Set up fellowships and grants for science communicators, but the government needs to think about attaching as few strings as possible to such assistance
  • Need for more government support for regional and local newspapers vis-à-vis covering science, especially local science
  • Need to use multimedia – especially short videos, podcasts illustrations and other aids – to communicate science instead of sticking to writing; visuals in particular could help surmount language barrier right away

A sympathetic science

If you feel the need to respond, please first make sure you have read the post in full.

I posted the following tweet a short while ago:

With reference to this:

Which in turn was with reference to this:

But a few seconds after publishing it, I deleted the tweet because I realised I didn’t agree with its message.

That quote by Isaac Asimov is a favourite if only because it contains in those words a bigger idea that expands voraciously the moment it comes in contact with the human mind. Yes, there is a problem with understanding ignorance and knowledge as two edges of the same blade, but somewhere in this mixup, a half-formed aspiration to rational living lurks in silence.

The author of another popular tweet commenting on the same topic did not say anything more than reproduce Kiran Bedi’s comment, issued after she shared her controversial ‘om’ tweet on January 4 (details here), that the chant is “worth listening to even if it’s fake”; the mocking laughter was implied, reaffirmed by invoking the name of the political party Bedi is affiliated to (the BJP – which certainly deserves the mockery).

However, I feel the criticism from thousands of people around the country does not address the part of Bedi’s WhatsApp message that reaches beyond facts and towards sympathy. Granted, it is stupid to claim that that is what the Sun sounds like, just as Indians’ obsession with NASA is both inexplicable and misguided. That Bedi is a senior government official, a member of the national ruling party and has 12 million followers on Twitter doesn’t help.

But what of Bedi suggesting that the controversy surrounding the provenance of the message doesn’t have to stand in the way of enjoying the message itself? Why doesn’t the criticism address that?

Perhaps it is because people think it is irrelevant, that it is simply the elucidation of a subjective experience that either cannot be disputed or, more worryingly, is not worth engaging over. If it is the latter, then I fear the critics harbour an idea that what science – as the umbrella term for the body of knowledge obtained by the application of a certain method and allied practices – is not concerned with is not worth being concerned about. Even if all of the critics in this particular episode do not harbour this sentiment, I know from personal experience that there are even more out there who do.

After publishing my tweet, I realised that Bedi’s statement that “it is worth listening to even if it’s fake” is not at odds with physicist Dibyendu Nandi’s words: that chanting the word ‘om’ is soothing and that its aesthetic benefits (if not anything greater) don’t need embellishment, certainly not in terms of pseudoscience and fake news. In fact, Bedi has admitted it is fake, and as a reasonable, secular and public-spirited observer, I believe that is all I can ask for – rather, that is all I can ask for from her in the aftermath of her regrettable action.

If I had known what was going to happen earlier, my expectation would still have been limited – in a worst case scenario in which she insists on sharing the chant – to ask her to qualify the NASA claim as being false. Twelve million followers is nothing to be laughed at.

But what I can ask of others (including myself) is this: mocking Bedi is fine, but what’s the harm in chanting the ‘om’ even if the claims surrounding it are false? What’s the harm in asserting that?

If the reply is, “There is no harm” – okay.

If the reply is, “There is no harm plus that is not in dispute” or that “There is harm because the assertion is rooted in a false, and falsifiable, premise” – I would say, “Maybe the assertion should be part of the conversation, such that the canonical response can be changed from <mockery of getting facts wrong>[1] to <mockery of getting facts wrong> + <discussing the claimed benefits of chanting ‘om’ and/or commenting on the ways in which adherence to factual knowledge can contribute to wellbeing>.”

The discourse of rational aspiration currently lacks any concern for the human condition, and while scientificity, or scientificness, has been becoming a higher virtue by the day, it does not appear to admit that far from having the best interests of the people at heart, it presumes that whatever sprouts from its cold seeds should be nutrition enough.[2]

[1] The tone of the response is beyond the scope of this post.

[2] a. If you believe this is neither science’s purpose nor responsibility, then you must agree it must not be wielded sans the clarification either that it represents an apathetic knowledge system or that the adjudication of factitude does not preclude the rest of Bedi’s message. b. Irrespective of questions about science’s purpose, could this be considered to be part of the purpose of science communication? (This is not a rhetorical question.)

Social media and science communication

The following article was originally intended for an Indian publication but I withdrew from the commission because I couldn’t rework the piece according to changes they required, mostly for lack of focus. I thank Karnika Kohli and Shruti Muralidhar for their inputs.

Since the mid-20th century, the news-publishing industry has wielded the most influence on people’s perception of what science is, what its responsibilities and goals are, and what scientists do. The internet changed this by disrupting how news-publishers made money.

In 2012, The Hindu used to sell a copy of its newspaper in Chennai for Rs 4.50 (or so) while it used to cost the publisher Rs 24 to print each copy. The publisher would make up the deficit by soliciting and printing ads from advertisers in different parts of the newspaper. The first major change in this regard was Google and the new centrality of its search engine to exploring the internet. Sites were keen to have their pages ‘rank’ better on search results and began to modify their content according to what Google wanted, giving rise to the industry of search-engine optimisation.

Second, Google AdSense allowed websites to run ads as well as advertisers to target specific users in line with which websites they visited and their content consumption patterns. Third, once Google News started becoming a major news aggregator, news sites re-tailored their content according to its specific needs, including reinterpreting the news in terms of the preferences of Google News and its users.

Fourth, bandwidth became cheaper around the world but especially in India, reducing the cost of accessing the internet and bringing more people online. In response, social media platforms — especially Facebook — began to set up walled gardens to keep these users from leaving the platform and consuming the news elsewhere. And when traffic to sites plummeted, their ads-based revenue came crashing down.

The effect of these ‘gardens’ has become so pronounced that recently, a paper in the journal Experimental Economics found that college students who went off Facebook consumed less news. This conclusion suffixes the belief that most people, especially in the 18-24 age group, consume the news on social media platforms with the notion that they don’t consume news anywhere else.

In another instance, Google at long last become a walled garden proper in August 2019: the fraction of its users who consumed the news on the site itself instead of following a link through to the publisher’s site had breached the 50% mark.

Finally, because the social media made it so easy to share information, citizen-journalism became more appealing, even lucrative. At the same time, social media platforms, which constantly evolve to accommodate their users’ aspirations, began to chip away at the need for public-spirited journalism. As a result, the amount of ‘bad information’ in the public domain exploded even as people become more unwilling to acknowledge that this was all the more reason society needed good journalists.

Obviously all of this is bound to have profound implications for how social media users perceive science. But while this isn’t easy to gauge without a dedicated, long-term study, it is possible to extrapolate based on what we know from anecdotal experiences. Through this exercise, let’s also move beyond the logistics of using the social media well and spotlight the virtues of getting on these platforms that so many people love to hate.

Broadly, social media allows users to organise information in a fixed number of ways but doesn’t give users control over how they are displayed. This limitation is good because the platform sidesteps the paradox of choice and forces users to focus only on what they are saying. But it is also bad because the limitation eliminates diversity of presentation, sometimes forcing users to shoehorn an idea into a note or image when a longer article or an interactive graphic would work better.

Second, social media platforms incentivise some user behaviours over others, which then constrains how users can present scientific results.

These two arcs are united by the fact that these platforms have socialised the consumption of news (and the production as well to some extent). That is, users discover a lot of news these days in social settings, such as in conversation with other users or in the timelines of accounts they follow. Such discovery happens after the news has been filtered through the lenses of others’ interests, encouraging users to follow users whose tastes they like and views they endorse, and stay away from others. This tendency is psychologically rewarding because it contributes to building the echo chamber, which is then economically rewarding for the platform’s owners.

All together, the social media — comprising platforms whose motive is profit and not social and psychological wellbeing — are populist by design. They privilege popularity over accuracy and logical value. In this regard, it would be hubristic to assume that the public perception of science has been separately or distinctly affected by general social-media use patterns.

Then again, these patterns have also helped mature the old idea that public debates aren’t won or lost on the back of strong scientific evidence or clever logical arguments. More generally, science communication in India is becoming more popular at the same time Indians are becoming more aware of the socio-political consequences of our digital lives and worlds. This simultaneity has the potential to birthe a generation of more conscientious and social-media-savvy science communicators that can devise clever ways to work around apparent barriers.

For example, scientists can adapt an app that has been designed to communicate speed, say by allowing users to rapidly compose and share text, pictures or videos, to meaningfully convey changes in that speed. They could highlight how different parts of a long experiment can proceed at different paces: sluggishly when growing a bacterial culture overnight and rapidly when some chemical reactions with it produce results in seconds.

Communicators can also ‘hack’ social-media echo chambers by setting up small, homogenous online communities. According to one 2018 study, such groups can “maximise the amount of information available to an individual” according to their preferences. The study argues that such “homophilic segregation can be efficient and even Pareto-optimal for society”.

Finally, the limits on how users can organise and present information has in fact incentivised those who had stayed away from communicating science for lack of time and/or resources to sign up. Maintaining a blog or writing articles for newspapers can be laborious. Additionally, writing for the press — the historically most common way to communicate scientific knowledge outside of journals — also means using at least a few hundred words to set readers up before the author can introduce her idea.

But if you discover that a paper has made a mistake or that you want to explain how something works, you post a few threaded tweets on Twitter in a matter of minutes and you are done. A Facebook note wouldn’t take much longer. Instagram even gives you the added benefit of using a large visual prompt to grab users’ attention. WhatsApp introduced the power to do all of this from your smartphone.

One remarkable subset of this group is traditionally underprivileged science workers (to use a broader term that encompasses scientists, postdoctoral scholars and lab assistants). While journalists are typically expected to be objective in their assessment, they — like almost everyone else — have been fattened on a diet of upper-caste men as scientists. So in the course of shortening the distance between a communicator and her audience, social media platforms empower less privileged groups otherwise trapped in a vicious media cycle, which renders them more obscure, to become visible.

Of course, some platforms exact a steep psychological price from users of currently or formerly marginalised groups (including women, transgender people, transsexual people, and pretty much everyone that doesn’t conform to heteronormativity) by forcing them to put up with trolls. So their continued presence on these platforms depends on the support of their institutions, other scientists and science communicators. And should they persist, the rewards range from opportunities to change users’ impression of who/what a scientist is to presenting themselves as a more socially just set of role models to aspiring scientists.

Obviously populism has downsides that are inimical to how science works and how it needs to be communicated, such as by falsely conflating brevity with conciseness and objectivity with neutrality. But it is always better to have a bunch of people using the social media to communicate science while being aware of its (arguably marginal) pitfalls than to have them avoid communicating altogether. This also seems to be the prevailing spirit among those scientists who recognise the importance of reaching the people, so to speak.

Science communication is becoming increasingly popular as an interdisciplinary field of its own right, wherein scientists and sociologists team up to determine the general principles of good communication by examining why some stories work so well among certain audiences, how psychological and linguistic techniques could play a part in establishing authority, etc.

These efforts parallel many scientists taking to Facebook and Twitter, posting updates regularly including comments on the news of the day (at least from their points of view) and offering non-scientists a glimpse of what it is like to be a working scientist in India. Easier access to their views also allows science journalists to contact scientists to understand which developments are worth covering and to solicit comments on the merits of a study or an idea.

In effect, Snehal Kadam and Karishma Kaushik wrote in IndiaBioscience, “social media discussions and opinions are playing a key role in Indian science. This is evident on multiple fronts, from increasing accessibility to administrators and enforcing policy changes to determining the way the Indian science community wants to be represented and viewed, and even breaking down silos between scientists and citizens.”

There are many resources to help scientists understand the social media and use these platforms to their advantage — whether to popularise science, find other scientists to collaborate with or debate science-related issues. I don’t want to repeat their salient suggestions (but @IndScicomm is a good place to start), plus I am not a scientist and I will let scientists decide what works for them.

That said, it is useful to remember that the social media are here to stay. As Efraín Rivera-Serrano, a cell-biology and virology researcher, wrote on PLOS, “These platforms are shaping the future of science and it is imperative for us to exploit these avenues as outreach tools to introduce, showcase, and defend science to the world.”

Retrospective: The Wire Science in 2019

At the start of 2019, The Wire Science decided to focus more on issues of science and society, and this is reflected in the year-end list of our best stories (in terms of traffic and engagement; listed below). Most of our hits don’t belong to this genre, but quite a few do – enough for us to believe that these issues aren’t as esoteric as they appear to be in day-to-day conversations.

Science communication is becoming more important in India and more people are taking to it as a career. As a result, the visibility of science stories in the press has increased. Scientists are also using Facebook and Twitter to voice their views, whether on the news of the day or to engage in debates about their field of work. If you are an English-speaker with access to the internet and a smartphone, you are quite unlikely to have missed these conversations.

Most popular articles of 2019

The Sciences

  1. Poor Albert Einstein, His Wrong Theories and Post-Truths
  2. What Is Quantum Biology?
  3. If Scientists Don’t Speak out Today, Who Will Be Left to Defend Science Tomorrow?
  4. Why Scientists Are Confused About How Fast the Universe Is Expanding
  5. CSIR Lab? Work on Applied Research or Make do With Small Share of Funds

Health

  1. Why Everyone Around You Seems to Be Getting Cancer
  2. MCI Finally Updates MBBS Curriculum to Include Disability Rights and Dignity
  3. PM Modi is Worried About Population Explosion, a Problem Set to Go Away in 2021
  4. Bihar: Who is Responsible for the Death of 100 Children?
  5. What’s NEXT for the NMC Bill? Confusion.

Environment

  1. Extreme Events in the Himalayan Region: Are We Prepared for the Big One?
  2. A Twist in the Tale: Electric Vehicles Will Worsen India’s Pollution Crisis
  3. How Tamil Nadu Is Fighting in the First Attempt to Save a Sinking Island
  4. Why NGT Thinks Allahabad Is on the Verge of an Epidemic After Kumbh Mela
  5. But Why Is the Cauvery Calling?

Space

  1. NASA Briefly Stopped Working With ISRO on One Count After ASAT Test
  2. Senior ISRO Scientist Criticises Sivan’s Approach After Moon Mission Setback
  3. ISRO Doesn’t Have a Satisfactory Answer to Why It Wants to Put Indians in Space
  4. Chandrayaan 2 in Limbo as ISRO Loses Contact With Lander, History on Hold
  5. ISRO Delays Chandrayaan 2 Launch Again – But How Is Beresheet Involved?

Education

  1. NCERT to Drop Chapters on Caste Struggles, Colonialism From Class 9 History Book
  2. JNU: The Story of the Fall of a Great University
  3. Dear Students, Here’s How You Could Have Reacted to Modi’s Mockery of Dyslexia
  4. Can a Student’s Suicide Note Make Us Rethink the IIT Dream?
  5. NET Now Mandatory for Scheduled Caste Students to Avail Research Scholarship

Our choice

The state has become more involved with the R&D establishment, although these engagements have been frequently controversial. In such a time, with so many public institutions teetering on the brink, it is important we ensure science doesn’t become passively pressed into legitimising actions of the state but rather maintains a mutually beneficial relationship that also strengthens the democracy. It is not the prerogative of scientists alone to do this; we must all get involved because the outcomes of science belong to all of us.

To this end, we must critique science, scientists, their practices, our teachers and research administrators, forest officers, conservationists and environmental activists, doctors, nurses, surgeons and other staff, members of the medical industry, spaceflight engineers and space lawyers, rules that control prices and access, examinations and examiners, and so forth. We must question the actions and policies of everyone involved in this knowledge economy. Ultimately, we must ask if our own aspirations are in line with what we as a people expect of the world around us, and science is a part of that.

It would be remiss to not mention the commendable job some other publications have been doing vis-à-vis covering science in India, including The Hindu, The Telegraph, The Print, Mongabay, Indian Express, Dinamalar, etc. Their efforts have given us the opportunity to disengage once in a while from the more important events of the day to focus on stories that might otherwise have never been read.

This year, The Wire Science published stories that interrogated what duties academic and research institutions have towards the people whose tax-money funds them, that discussed more inclusivity and transparency because only a more diverse group of practitioners can ask more diverse questions, and that examined how, though science offers a useful way to make sense of the natural order, it doesn’t automatically justify itself nor is it entitled to the moral higher-ground.

The overarching idea was to ask questions about the natural universe without forgetting that the process of answering those questions is embedded in a wider social context that both supports and informs scientists’ practices and beliefs. There is no science without the scientists that practice it – yet most of us are not prepared to consider that science is as messy as every other human endeavour and isn’t the single-minded pursuit of truth its exponents often say it is.

In these fraught times, we shouldn’t forget that science guided only by the light of logic produces many of the reasons of state. The simplest way science communication can participate in this exercise, and not just be a mute spectator, is by injecting the scientist back into the science. This isn’t an abdication of the ideal of objectivity, even though objectivity itself has been outmoded by the advent of the irrational, majoritarian and xenophobic politics of nationalism. Instead, it is a reaffirmation that you can take science out of politics but that you can’t take politics out of science.

At the same time, the stories that emerge from this premise aren’t entirely immune to the incremental nature of scientific progress. We often have to march in step with the gentle rate at which scientists invent and/or discover things, and the similar pace at which the improvements among them are available to everyone everywhere. This fact offers one downside and one up: it is harder for our output to be noticed in the din of the news, but by staying alert to how little pieces of information from diverse lines of inquiry – both scientific and otherwise, especially from social science – can team up with significant consequence, we are better able to anticipate how stories will evolve and affect the world around them.

We hope you will continue to read, share and comment on the content published by The Wire Science. We have also been publicising articles from other publications and by bloggers we found interesting and have been reproducing (if available) on our website and on our social media platforms in an effort to create an appreciation of science stories beyond the ones we have been able to afford.

On this note: please also donate a sum comfortable to you to support our work. Even an amount as little as Rs 200 will go a long way.

The Wire
December 26, 2019