Bharat Biotech gets 1/10 for tweet

If I had been Bharat Biotech’s teacher and “Where is your data?” had been an examination question, Bharat Biotech would have received 1 out of 10 marks.

The correct answer to where is your data can take one of two forms: either an update in the form of where the data is in the data-processing pipeline or to actually produce the data. The latter in fact would have deserved a bonus point, if only because the question wasn’t precise enough. The question should really have been a demand – “Submit your data” – instead of allowing the answerer, in its current form, to get away with simply stating where the data currently rests. Bharat Biotech gets 1/10 because it does neither; the 1 is for correct spelling.

In fact, the company’s chest-thumping based on publishing nine papers in 12 months is symptomatic of a larger problem with the student. He fails to understand that only data is data, and that the demand for data is a demand for data per se. It ought not to be confused with a demand for authority. Data accords authority in an object-oriented and democratic sense. With data, everyone else can see for themselves – whether by themselves or through the mouths and minds of independent experts they trust – if the student’s claims hold up. And if they do, they confer the object of the data, the COVID-19 vaccine named Covaxin, with attributes like reliability.

(Why ‘he’? The patriarchal conditions in and with which science has operated around the world, but especially in Europe and the US, in the last century or so have diffused into scientific practice itself, in terms of how the people at large have constituted – as well as have been expected to constitute, by the scientific community – scientific authority, expertise’s immunity to criticism and ownership of knowledge production and dissemination apparatuses, typically through “discrimination, socialisation and the gender division of labour”. Irrespective of the means – although both from the company’s and the government’s sides, very few women have fielded and responded to questions about drug/vaccine approvals – we already see these features in the manner in which ‘conventional’ scientific journals have sought to retain their place in the international knowledge production economy, and their tendency to resort to arguments that they serve an important role in it even as they push for anti-transparent practices, from the scientific papers’ contents to details about why they charge so much money.)

However, the student has confused authority of this kind with authority of a kind we more commonly associate with the conventional scientific publishing paradigm: in which journals are gatekeepers of scientific knowledge – both in terms of what topics they ‘accept’ manuscripts on and what they consider to be ‘good’ results; and in which a paper, once published, is placed behind a steeply priced paywall that keeps both knowledge of the paper’s contents and the terms of its ‘acceptance’ by the journal beyond public scrutiny – even when public money funded the research described therein. As such, his insistence that we be okay with his having published nine papers in 12 months is really his insistence that we vest our faith in scientific journals, and by extension their vaunted decision to ‘approve of’ his work. This confusion on his part is also reflected in what he offers as his explanation for the absence of data in the public domain, but which are really his excuses.

Our scientific commitment as a company stands firm with data generation, data transparency and peer-reviewed publications.

Sharing your data in a secluded channel with government bodies is not data transparency. That’s what the student needs for regulatory approval. Transparency applies when the data is available for everyone else to independently access, understand and check.

Phase 3 final analysis data will be available soon. Final analysis requires efficacy and 2 months safety follow-up data on all subjects. This is mandated by CDSCO and USFDA. Final analysis will first be submitted to CDSCO, followed by submissions to peer reviewed journals and media dissemination.

What is required by CDSCO does not matter to those allowing Bharat Biotech’s vaccines into the bloodstreams, and in fact every Indian on whom the student has inflicted this pseudo-choice. And at this point to invoke what the USFDA requires can only lead to a joke: studies of the vaccines involved in the formal vaccination drive have already been published in the US; even studies of new vaccines as well as follow-ups of existing formulations are being placed in the public domain through preprint papers that describe the data from soup to nuts. All we got from the student vis-à-vis Covaxin this year was interim phase 3 trial data in early March, announced through a press release, and devoid even of error bars for its most salient claims.

So even for an imprecisely worded question, it has done well to elicit a telling answer from the student: that the data does not exist, and the student believes he is too good for us all.

Thanks to Jahnavi Sen for reading the article before it was published.

Why scientists should read more

The amount of communicative effort to describe the fact of a ball being thrown is vanishingly low. It’s as simple as saying, “X threw the ball.” It takes a bit more effort to describe how an internal combustion engine works – especially if you’re writing for readers who have no idea how thermodynamics works. However, if you spend enough time, you can still completely describe it without compromising on any details.

Things start to get more difficult when you try to explain, for example, how webpages are loaded in your browser: because the technology is more complicated and you often need to talk about electric signals and logical computations – entities that you can’t directly see. You really start to max out when you try to describe everything that goes into launching a probe from Earth and landing it on a comet because, among other reasons, it brings together advanced ideas in a large number of fields.

At this point, you feel ambitious and you turn your attention to quantum technologies – only to realise you’ve crossed a threshold into a completely different realm of communication, a realm in which you need to pick between telling the whole story and risk being (wildly) misunderstood OR swallowing some details and making sure you’re entirely understood.

Last year, a friend and I spent dozens of hours writing a 1,800-word article explaining the Aharonov-Bohm quantum interference effect. We struggled so much because understanding this effect – in which electrons are affected by electromagnetic fields that aren’t there – required us to understand the wave-function, a purely mathematical object that describes real-world phenomena, like the behaviour of some subatomic particles, and mathematical-physical processes like non-Abelian transformations. Thankfully my friend was a physicist, a string theorist for added measure; but while this meant that I could understand what was going on, we spent a considerable amount of time negotiating the right combination of metaphors to communicate what we wanted to communicate.

However, I’m even more grateful in hindsight that my friend was a physicist who understood the need to not exhaustively include details. This need manifests in two important ways. The first is the simpler, grammatical way, in which we construct increasingly involved meanings using a combination of subjects, objects, referrers, referents, verbs, adverbs, prepositions, gerunds, etc. The second way is more specific to science communication: in which the communicator actively selects a level of preexisting knowledge on the reader’s part – say, high-school education at an English-medium institution – and simplifies the slightly more complicated stuff while using approximations, metaphors and allusions to reach for the mind-boggling.

Think of it like building an F1 racecar. It’s kinda difficult if you already have the engine, some components to transfer kinetic energy through the car and a can of petrol. It’s just ridiculous if you need to start with mining iron ore, extracting oil and preparing a business case to conduct televisable racing sports. In the second case, you’re better off describing what you’re trying to do to the caveman next to you using science fiction, maybe poetry. The problem is that to really help an undergraduate student of mechanical engineering make sense of, say, the Casimir effect, I’d rather say:

According to quantum mechanics, a vacuum isn’t completely empty; rather, it’s filled with quantum fluctuations. For example, if you take two uncharged plates and bring them together in a vacuum, only quantum fluctuations with wavelengths shorter than the distance between the plates can squeeze between them. Outside the plates, however, fluctuations of all wavelengths can fit. The energy outside will be greater than inside, resulting in a net force that pushes the plates together.

‘Quantum Atmospheres’ May Reveal Secrets of Matter, Quanta, September 2018

I wouldn’t say the following even though it’s much less wrong:

The Casimir effect can be understood by the idea that the presence of conducting metals and dielectrics alters the vacuum expectation value of the energy of the second-quantised electromagnetic field. Since the value of this energy depends on the shapes and positions of the conductors and dielectrics, the Casimir effect manifests itself as a force between such objects.

Casimir effect, Wikipedia

Put differently, the purpose of communication is to be understood – not learnt. And as I’m learning these days, while helping virologists compose articles on the novel coronavirus and convincing physicists that comparing the Higgs field to molasses isn’t wrong, this difference isn’t common knowledge at all. More importantly, I’m starting to think that my physicist-friend who really got this difference did so because he reads a lot. He’s a veritable devourer of texts. So he knows it’s okay – and crucially why it’s okay – to skip some details.

I’m half-enraged when really smart scientists just don’t get this, and accuse editors (like me) of trying instead to misrepresent their work. (A group that’s slightly less frustrating consists of authors who list their arguments in one paragraph after another, without any thought for the article’s structure and – more broadly – recognising the importance of telling a story. Even if you’re reviewing a book or critiquing a play, it’s important to tell a story about the thing you’re writing about, and not simply enumerate your points.)

To them – which is all of them because those who think they know the difference but really don’t aren’t going to acknowledge the need to bridge the difference, and those who really know the difference are going to continue reading anyway – I say: I acknowledge that imploring people to communicate science more without reading more is fallacious, so read more, especially novels and creative non-fiction, and stories that don’t just tell stories but show you how we make and remember meaning, how we memorialise human agency, how memory works (or doesn’t), and where knowledge ends and wisdom begins.

There’s a similar problem I’ve faced when working with people for whom English isn’t the first language. Recently, a person used to reading and composing articles in the passive voice was livid after I’d changed numerous sentences in the article they’d submitted to the active voice. They really didn’t know why writing, and reading, in the active voice is better because they hadn’t ever had to use English for anything other than writing and reading scientific papers, where the passive voice is par for the course.

I had a bigger falling out with another author because I hadn’t been able to perfectly understand the point they were trying to make, in sentences of broken English, and used what I could infer to patch them up – except I was told I’d got most of them wrong. And they couldn’t implement my suggestions either because they couldn’t understand my broken Hindi.

These are people that I can’t ask to read more. The Wire and The Wire Science publish in English but, despite my (admittedly inflated) view of how good these publications are, I’ve no reason to expect anyone to learn a new language because they wish to communicate their ideas to a large audience. That’s a bigger beast of a problem, with tentacles snaking through colonialism, linguistic chauvinism, regional identities, even ideologies (like mine – to make no attempts to act on instructions, requests, etc. issued in Hindi even if I understand the statement). But at the same time there’s often too much lost in translation – so much so that (speaking from my experience in the last five years) 50% of all submissions written by authors for whom English isn’t the first language don’t go on to get published, even if it was possible for either party to glimpse during the editing process that they had a fascinating idea on their hands.

And to me, this is quite disappointing because one of my goals is to publish a more diverse group of writers, especially from parts of the country underrepresented thus far in the national media landscape. Then again, I acknowledge that this status quo axiomatically charges us to ensure there are independent media outlets with science sections and publishing in as many languages as we need. A monumental task as things currently stand, yes, but nonetheless, we remain charged.

The difficulty of option ‘c’

Can any journalist become a science journalist? More specifically, can any journalist become a science journalist without understanding the methods of scientific practice and administration? This is not a trivial question because not all the methods of science can be discovered or discerned from the corresponding ‘first principles’. That is, common sense and intelligence alone cannot consummate your transformation; you must access new information that you cannot derive through inductive reasoning.

For example, how would you treat the following statement: “Scientists prove that X causes Y”?

a. You could take the statement at face-value

b. You could probe how and why scientists proved that X causes Y

c. You could interrogate the claim that X causes Y, or

d. You could, of course, ignore it.

(Option (d) is the way to go for claims in the popular as well as scientific literature of the type “Scientists prove that coffee/wine/chocolate cause your heart to strengthen/weaken/etc.” unless the story you’re working on concerns the meta-narrative of these studies.)

Any way, choosing between (a), (b) and (c) is not easy, often because which option you pick depends on how much you know about how the modern scientific industry works. For example, a non-science journalist is likely to go with (a) and/or (b) because, first, they typically believe that the act of proving something is a singular event, localised in time and space, with no room for disagreement.

This is after all the picture of proof-making that ill-informed supporters of science (arguably more than even supporters of the ideal of scientism) harbour: “Scientists have proved that X causes Y, so that’s that,” in the service of silencing inconvenient claims like “human activities aren’t causing Earth’s surface to heat up” or like “climate geoengineering is bad”. I believe that anthropogenic global warming is real and that we need to consider stratospheric aerosol injections but flattening the proof-making exercise threatens to marginalise disagreements among scientists themselves, such as about the extent of warming or about the long-term effects on biodiversity.

The second reason (a) and (b) type stories are more common, but especially (a), follows from this perspective of proofs: the view that scientists are authorities, and we are not qualified to question them. As it happens, most of us will never be qualified enough, but question them we can thanks to four axioms.

First, science being deployed for the public good must be well understood in much the same way a drug that has been tested for efficacy must also be exculpated of deleterious side-effects.

Second, journalists don’t need to critique the choice of reagents, animal models, numerical methods or apparatus design to be able to uncover loopholes, inconsistencies and/or shortcomings. Instead, that oppositional role is easily performed by independent scientists whose comments a journalist can invite on the study.

Third, science is nothing without the humans that practice it, and most of the more accessible stories of science (not news reports) are really stories of the humans practising the science.

Fourth, organised science – hot take: like organised religion – is a human endeavour tied up with human structures, human politics and human foibles, which means as much of what we identify as science lies in the discovery of scientific knowledge as in the way we fund, organise, disseminate and preserve that knowledge.

These four allowances together imply that a science journalist is not a journalist familiar with advanced mathematics or who can perform a tricky experiment but is a journalist trained to write about science without requiring such knowledge.

§

Anyone familiar with India will recognise that these two principal barriers – a limited understanding of proof-making and the view of scientists as authority figures – to becoming a good science journalist are practically seeded by the inadequate school-level education system. But they are also furthered by India’s prevailing political climate, especially in the way a highly polarised society undermines the role of expertise.

Some people will tell you that you can’t question highly trained scientists because you are not a highly trained scientist but others will say you’re entitled to question everything as a thinking, reasoning, socially engaged global citizen.

As it happens, these aren’t opposing points of view. It’s just that the left and the right have broken the idea of expertise into two pieces, taking one each for themselves, such that the political left is often comfortable with questioning facts like grinding bricks to unusable dust while the political right will treat all bricks the same irrespective of the quality of clay; the leftist will subsequently insist that quality control is all-important whereas the rightist will champion the virtues of pragmatism.

In this fracas to deprive expertise either of authority or of critique, or sometimes both, the expert becomes deconstructed to the point of nonexistence. As a result, the effective performance of science journalism, instead of trying to pander equally to the left’s and the right’s respective conceptions of the expert, converges on the attempt to reconstruct expertise as it should be: interrogated without undermining it, considered without elevating it.

Obviously, this is easier said, and more enjoyably said, than done.

A science for the non-1%

David Michaels, an epidemiologist and a former US assistant secretary of labour for occupational safety and health under Barack Obama, writes in the Boston Review:

[Product defence] operations have on their payrolls—or can bring in on a moment’s notice—toxicologists, epidemiologists, biostatisticians, risk assessors, and any other professionally trained, media-savvy experts deemed necessary (economists too, especially for inflating the costs and deflating the benefits of proposed regulation, as well as for antitrust issues). Much of their work involves production of scientific materials that purport to show that a product a corporation makes or uses or even discharges as air or water pollution is just not very dangerous. These useful “experts” produce impressive-looking reports and publish the results of their studies in peer-reviewed scientific journals (reviewed, of course, by peers of the hired guns writing the articles). Simply put, the product defence machine cooks the books, and if the first recipe doesn’t pan out with the desired results, they commission a new effort and try again.

Members of the corporate class have played an instrumental role in undermining trust in science in the last century, and Michaels’s exposition provides an insightful glimpse of how they work, and why what they do works. However, the narrative Michaels employs, as illustrated above, treats scientists like minions – a group of people that will follow your instructions but will not endeavour to question how their research is going to be used as long as, presumably, their own goals are met – and also excuses them for it. This is silly: the corporate class couldn’t have done what it did without help from a sliver of the scientific class that sold its expertise to the highest bidder.

Even if such actions may have been more the result of incompetence than of malice, for too long have scientists claimed vincible ignorance in their quasi-traditional tendency to prize unattached scientific progress more than scientific progress in step with societal aspirations. They need to step up, step out and participate in political programmes that deploy scientific knowledge to solve messy real-world problems, which frequently fail and just as frequently serve misguided ends (such as – but sure as hell not limited to – laundering the soiled reputation of a pedophile and convicted sex offender).

But even so, even as the scientists’ conduct typifies the problem, the buck stops with the framework of incentives that guides them.

Despite its connections with technologies that powered colonialism and war, science has somehow accrued a reputation of being clean. To want to be a scientist today is to want to make sense of the natural universe – an aspiration both simple and respectable – and to make a break from the piddling problems of here and now to the more spiritually refined omnipresent and eternal. However, this image can’t afford to maintain itself by taking the deeply human world it is embedded in for granted.

Science has become the reason for state simply because the state is busy keeping science and politics separate. No academic programme in the world today considers scientific research to be at par with public engagement and political participationa when exactly this is necessary to establish science as an exercise through which, fundamentally, people construct knowledge about the world and then ensure it is used responsibly (as well as to demote it from the lofty pedestal where it currently lords over the social sciences and humanities). Instead, we have a system that encourages only the production of knowledge, tying it up with metrics of professional success, career advancement and, most importantly, a culture of higher educationb and research that won’t brook dissent and tolerates activist-scientists as lesser creatures.

a. And it is to the government’s credit that political participation has become synonymous with electoral politics and the public expression of allegiance to political ideologies.

b. Indeed, the problem most commonly manifests as a jaundiced impression of the purpose of teaching.

The perpetuators of this structure are responsible for the formation and subsequent profitability of “the strategy of manufacturing doubt”, which Michaels writes “has worked wonders … as a public relations tool in the current debate over the use of scientific evidence in public policy. … [The] main motivation all along has been only to sow confusion and buy time, sometimes lots of time, allowing entire industries to thrive or individual companies to maintain market share while developing a new product.”

To fight the vision of these perpetuators, to at least rescue the fruits of the methods of science from inadvertent ignominy, we need publicly active scientists to be the rule, not the exceptions to the rule. We need structural incentives to change to accommodate the fact that, if they don’t, this group of people will definitely remain limited to members of the upper class and/or upper castes. We need a stronger, closer marriage of science, the social sciences, business administration and policymaking.

To be sure, I’m neither saying the mere presence of scientists in public debates will lead to swifter solutions nor that the absence of science alone in policymaking is responsible for so many of the crises of our times – but that their absence has left cracks so big, it’s quite difficult to consider if they can be sealed any other wayc. And yes, the world will slow down, the richer will become less rich and economic growth will become more halting, but these are all also excuses to maintain a status quo that has only exploited the non-1% for two centuries straight.

c. Michaels concludes his piece with a list of techniques the product-defence faction has used to sow doubt and, in the resulting moments of vulnerability, ‘sell science’ – i.e. techniques that represent the absence of guiding voices.

Of course, there’s only so much one can do if the political class isn’t receptive to one’s ideas – but we must begin somewhere, and what better place to begin than at the knowledgeable place?

Scientism is not ‘nonsense’

The @realscientists rocur account on Twitter took a surprising turn earlier today when its current curator, Teresa Ambrosio, a chemist, tweeted the following:

https://twitter.com/teresaambrosio_/status/1187259093909757952

If I had to give her the benefit of doubt, I’d say she was pointing this tweet at the hordes of people – especially Americans – whose conspiratorial attitude towards vaccines and immigrants is founded entirely on their personal experiences being at odds with scientific knowledge. However, Ambrosio wasn’t specific, so I asked her:

The responses to my tweet, encouraged in part by Ambrosio herself, were at first dominated by (too many) people who seemed to agree, broadly, that science is an apolitical endeavour that could be cleanly separated from the people who practice it and that science has nothing to do with the faulty application of scientific knowledge. However, the conversation rapidly turned after one of the responders called scientism “nonsense” – a stance that would rankle not just the well-informed historian of science but in fact so many people in non-developed nations where scientific knowledge is often used to legitimise statutory authority.

I recommend reading the whole conversation, especially if what you’re looking for is a good and sufficiently well-referenced summary of a) why scientism is anything but nonsense; b) why science is not apolitical; and c) how scientism is rooted in the need to separate science and the scientist.