Physicists produce video of time crystal in action 😱

Have you heard of time crystals?

A crystal is any object whose atoms are arranged in a fixed pattern in space, with the pattern repeating itself. So what we typically know to be crystals are really space crystals. We didn’t have to bother with the prefix because space crystals were the only kind of crystals we knew until time crystals came along.

Time crystals are crystalline objects whose atoms exhibit behaviour that repeats itself in time, as periodic events. The atoms of a time crystal spin in a fixed and coordinated pattern, changing direction at fixed intervals.

Physicists sometimes prefer to quantify these spin patterns as quasiparticles to simplify their calculations. Quasiparticles are not particles per se. To understand what they are, consider a popular one called phonons. Say you strike a metal spoon on the table, producing a mild ringing sound. This sound is the result of sound waves propagating through the metal’s grid of atoms, carrying vibrational energy. You could also understand each wave to be a particle instead, carrying the same amount of energy that each sound wave carries. These quasiparticles are called phonons.

In the same way, patterns of spinning charged particles also carry some energy. Each electron in an atom, for example, generates a tiny magnetic field around itself as it spins. The directions in which the electrons in a material spin collectively determine many properties of the material’s macroscopic magnetic field. Sometimes, shifts in some electrons’ magnetic fields could set off a disturbance in the macroscopic field – like waves of magnetic energy rippling out. You could quantify these ‘spin waves’ in the form of quasiparticles called magnons. Note that magnons quantify spin waves; the waves themselves can be from electrons, ions or other charged particles.

As quasiparticles, magnons behave like a class of particles called bosons – which are nature’s force-carriers. Photons are bosons that mediate the electromagnetic force; W and Z bosons mediate the weak nuclear force responsible for radioactivity; gluons mediate the strong nuclear force, which carries the energy you see released by nuclear weapons; scientists have hypothesised the existence of gravitons, for gravity, but haven’t found them yet. Like all bosons, magnons don’t obey Pauli’s exclusion principle and they can be made to form exotic states of matter like superfluids and Bose-Einstein condensates.

Other quasiparticles include excitons and polarons (useful in the study of electronic circuits), plasmons (of plasma) and polaritons (of light-matter interactions).

Physicist Frank Wilczek proposed the existence of time crystals in 2012. One reason time crystals are interesting to physicists is that they break time-translation symmetry in their ground state.

This statement has two important parts. The first concerns time-translation symmetry-breaking. Scientists assume the laws of physics are the same in all directions – yet we still have objects like crystals, whose atoms are arranged in specific patterns that repeat themselves. Say the atoms of a crystal are arranged in a hexagonal pattern. If you kept the position of one atom fixed and rotated the atomic lattice around it or if you moved to the left or right of that atom, in both cases by an arbitrary amount, your view of the lattice will also change. This happens because crystals break spatial symmetry. Similarly, time symmetry is broken if an event repeats itself in time – like, say, a magnetic field whose structure changes between two shapes over and over.

The second part of the statement concerns the (thermodynamic) ground state – the state of any quantum mechanical system when it has its lowest possible energy. (‘Quantum mechanical system’ is a generic term for any system – like a group of electrons – in which quantum mechanical effects have the dominant influence on the system’s state and behaviour. An example of a non-quantum-mechanical system is the Solar System, where gravity dominates.) Wilczek revived interest in time crystals as objects that break time-translation symmetry in their ground states. Put another way, they are quantum mechanical systems whose constituent particles perform a periodic activity without changing the overall energy of the system.

The advent of quantum mechanics and relativity theory in the early 20th century alerted physicists to the existence of various symmetries and, through the work of Emmy Noether, their connection to different conservation laws. For example, a system in which the laws of nature were the same throughout history and will be in future – i.e. preserves time-translation symmetry – will also conserve energy. Does this mean time crystals violate the law of conservation of energy? No. The atoms’ or electrons’ spin is not the result of the electrons’ or atoms’ kinetic energy but is an inherent quantum mechanical property. This energy can’t be used to perform work the same way, say, a motor can pump water. The system’s total energy is still conserved.

Now, physicists from Germany have reported that they have observed a time crystal ‘in action’ – a feat notable on three levels. First, it’s impressive that they have created a time crystal in the first place (even if they are not the first to do so). The researchers passed radio frequency waves through a strip of nickel-iron alloy a few micrometers wide. According to ScienceAlert, this ‘current’ “produced an oscillating magnetic field on the strip, with magnetic waves travelling onto it from both ends”. As a result, they “stimulated the magnons in the strip, and these moving magnons then condensed into a repeating pattern”.

Second, while quasiparticles are not actual particles per se, they exhibit some properties of particles. One of them is scattering, like two billiard balls might bounce off each other to go off in different directions at different speeds. Similarly, the researchers created more magnons and scattered them off the magnons involved in the repeating pattern. The post-scatter magnons had a shorter wavelength than they did originally, in line with expectations, and the researchers also found that they could control this wavelength by adjusting the frequency of the stimulating radio waves.

An ability to control such values often means the process could have an application. The ability to precisely manipulate systems involving the spin of electrons has evolved into a field called spintronics. Like electronics makes use of the electrical properties of subatomic particles, spintronics is expected to leverage spin-related properties and enable ultra-fast hard-drives and other technologies.

Third, the researchers were able to produce a video showing the magnons moving around. This is remarkable because the thing that makes a time crystal so unique is the result of quantum mechanical processes, which are microscopic in nature. It’s not often that you can observe their effects on the macroscopic scale. The principal reason the researchers were able achieve this is feat is the method they used to create the time crystal.

Previous efforts to create time crystals have used systems like quantum gases and Bose-Einstein condensates, both of which require sophisticated apparatuses to work with, in ultra-cold conditions, and whose behaviour researchers can track only by carefully measuring their physical and other properties. On the other hand, the current experiment works at room temperature and uses a more ‘straightforward’ setup that is also fairly large-scale – enough to be visible under an X-ray microscope.

Working this microscope is no small feat, however. Charged particles emit radiation when they’re accelerated along a circular path. An accelerator called BESSY II in Berlin uses this principle to produce X-rays. Then the microscope, called MAXYMUS, focuses the X-rays onto an extremely small spot – a few nanometers wide – and “scans across the sample”, according to its official webpage. A “variety of X-ray detectors”, including a camera, observe how the X-rays interact with the sample to produce the final images. Here’s the resulting video of the time crystal, captured at 40 billion frames per second:

I asked one of the paper’s coauthors, Joachim Gräfe, a research group leader in the department of modern magnetic systems at the Max Planck Institute for Intelligent Systems, Stuttgart, two follow-up questions. He was kind enough to reply in detail; his answers are reproduced in full below:

  1. A time crystal represents a system that breaks time translation symmetry in its ground state. When you use radio-frequency waves to stimulate the magnons in the nickel-iron alloy, the system is no longer in its ground state – right?

The ground state debate is the interesting part of the discussion for theoreticians. Our paper is more about the experimental observation and an interaction towards a use case. It is argued that a time crystal cannot be a thermodynamic ground state. However, it is in a ground state in a periodically alternating potential, i.e. a dynamic ground state. The intriguing thing about time crystals is that they are in ground states in these periodically alternating potentials, but they do not/will not necessarily have the same periodicity as the alternating potential.

The condensation of the magnonic time crystal is a ground state of the system in the presence of the RF field (the periodically alternating potential), but it will dissipate through damping when the RF field is switched off. However, even in a system without damping, it would not form without the RF field. It really needs the periodically alternating potential. It is really a requirement to have a dynamic system to have a time crystal. I hope I have not confused you more than before my answer. Time crystals are quite mind boggling. 😵🤯

  1. Previous experiments to observe time crystals in action have used sophisticated systems like quantum gases and Bose-Einstein condensates (BECs). Your experiment’s setup is a lot more straightforward, in a manner of speaking. Why do you think previous research teams didn’t just use your setup? Or does your setup have any particular difficulty that you overcame in the course of your study?

Interesting question. With the benefit of hindsight: our time crystal is quite obvious, why didn’t anybody else do it? Magnons only recently have emerged … as a sandbox for bosonic quantum effects (indeed, you can show BEC and superfluidity for magnons as well). So it is quite straightforward to turn towards magnons as bosons for these studies. However, our X-ray microscope (at the synchrotron light source) was probably the only instrument at the time to have the required spatial and temporal resolution with magnetic contrast to shoot a video of the space-time crystal. Most other magnon detection methods (in the lab) are indirect and don’t yield such a nice video.

On the other hand, I believe that the interesting thing about our paper is not that it was incredibly difficult to observe the space time crystal, but that it is rather simple to create one. Apparently, you can easily create a large (magnonic) space time crystal at room temperature and do something with it. Showing that it is easy to create a space time crystal opens this effect up for technological exploitation.

The science in Netflix’s ‘Spectral’

I watched Spectral, the movie that released on Netflix on December 9, 2016, after Universal Studios got cold feet about releasing it on the big screen – the same place where a previous offering, Warcraft, had been gutted. Spectral is sci-fi and has a few great moments but mostly it’s bland and begging for some tabasco. The premise: an elite group of American soldiers deployed in Moldova come upon some belligerent ghost-like creatures in a city they’re fighting in. They’ve no clue how to stop them, so they fly in an engineer to consult from DARPA, the same guy who built the goggles that detected the creatures in the first place. Together, they do things. Now, I’d like to talk about the science in the film and not the plot itself, though the former feeds the latter.

SPOILERS AHEAD

A scene from the film 'Spectral' (2016). Source: Netflix
A scene from the film ‘Spectral’ (2016). Source: Netflix

Towards the middle of the movie, the engineer realises that the ghost-like creatures have the same limitations as – wait for it – a Bose-Einstein condensate (BEC). They can pass through walls but not ceramic or heavy metal (not the music), they rapidly freeze objects in their path, and conventional weapons, typically projectiles of some kind, can’t stop them. Frankly, it’s fabulous that Ian Fried, the film’s writer, thought to use creatures made of BECs as villains.

A BEC is an exotic state of matter in which a group of ultra-cold particles condense into a superfluid (i.e., it flows without viscosity). Once a BEC forms, a subsection of a BEC can’t be removed from it without breaking the whole BEC state down. You’d think this makes the BEC especially fragile – because it’s susceptible to so many ‘liabilities’ – but it’s the exact opposite. In a BEC, the energy required to ‘kick’ a single particle out of its special state is equal to the energy that’s required to ‘kick’ all the particles out, making BECs as a whole that much more durable.

This property is apparently beneficial for the creatures of Spectral, and that’s where the similarity ends because BECs have other properties that are inimical to the portrayal of the creatures. Two immediately came to mind: first, BECs are attainable only at ultra-cold temperatures; and second, the creatures can’t be seen by the naked eye but are revealed by UV light. There’s a third and relevant property but which we’ll come to later: that BECs have to be composed of bosons or bosonic particles.

It’s not clear why Spectral‘s creatures are visible only when exposed to light of a certain kind. Clyne, the DARPA engineer, says in a scene, “If I can turn it inside out, by reversing the polarity of some of the components, I might be able to turn it from a camera [that, he earlier says, is one that “projects the right wavelength of UV light”] into a searchlight. We’ll [then] be able to see them with our own eyes.” However, the documented ability of BECs to slow down light to a great extent (5.7-million times more than lead can, in certain conditions) should make them appear extremely opaque. More specifically, while a BEC can be created that is transparent to a very narrow range of frequencies of electromagnetic radiation, it will stonewall all frequencies outside of this range on the flipside. That the BECs in Spectral are opaque to a single frequency and transparent to all others is weird.

Obviating the need for special filters or torches to be able to see the creatures simplifies Spectral by removing one entire layer of complexity. However, it would remove the need for the DARPA engineer also, who comes up with the hyperspectral camera and, its inside-out version, the “right wavelength of UV” searchlight. Additionally, the complexity serves another purpose. Ahead of the climax, Clyne builds an energy-discharging gun whose plasma-bullets of heat can rip through the BECs (fair enough). This tech is also slightly futuristic. If the sci-fi/futurism of the rest of Spectral leading up to that moment (when he invents the gun) was absent, then the second-half of the movie would’ve become way more sci-fi than the first-half, effectively leaving Spectral split between two genres: sci-fi and wtf. Thus the need for the “right wavelength of UV” condition?

Now, to the third property. Not all particles can be used to make BECs. Its two predictors, Satyendra Nath Bose and Albert Einstein, were working (on paper) with kinds of particles since called bosons. In nature, bosons are force-carriers, acting against matter-maker particles called fermions. A more technical distinction between them is that the behaviour of bosons is explained using Bose-Einstein statistics while the behaviour of fermions is explained using Fermi-Dirac statistics. And only Bose-Einstein statistics predicts the existence of states of matter called condensates, not Femi-Dirac statistics.

(Aside: Clyne, when explaining what BECs are in Spectral, says its predictors are “Nath Bose and Albert Einstein”. Both ‘Nath’ and ‘Bose’ are surnames in India, so “Nath Bose” is both anyone and no one at all. Ugh. Another thing is I’ve never heard anyone refer to S.N. Bose as “Nath Bose”, only ‘Satyendranath Bose’ or, simply, ‘Satyen Bose’. Why do Clyne/Fried stick to “Nath Bose”? Was “Satyendra” too hard to pronounce?)

All particles constitute a certain amount of energy, which under some circumstances can increase or decrease. However, the increments of energy in which this happens are well-defined and fixed (hence the ‘quantum’ of quantum mechanics). So, for an oversimplified example, a particle can be said to occupy energy levels constituting 2, 4 or 6 units but never of 1, 2.5 or 3 units. Now, when a very-low-density collection of bosons is cooled to an ultra-cold temperature (a few hundredths of kelvins or cooler), the bosons increasingly prefer occupying fewer and fewer energy levels. At one point, they will all occupy a single and common level – flouting a fundamental rule that there’s a maximum limit for the number of particles that can be in the same level at once. (In technical parlance, the wavefunctions of all the bosons will merge.)

When this condition is achieved, a BEC will have been formed. And in this condition, even if a new boson is added to the condensate, it will be forced into occupying the same level as every other boson in the condensate. This condition is also out of limits for all fermions – except in very special circumstances, and circumstances whose exceptionalism perhaps makes way for Spectral‘s more fantastic condensate-creatures. We known one such as superconductivity.

In a superconducting material, electrons flow without any resistance whatsoever at very low temperatures. The most widely applied theory of superconductivity interprets this flow as being that of a superfluid, and the ‘sea’ of electrons flowing as such to be a BEC. However, electrons are fermions. To overcome this barrier, Leon Cooper proposed in 1956 that the electrons didn’t form a condensate straight away but that there was an intervening state called a Cooper pair. A Cooper pair is a pair of electrons that had become bound, overcoming their like-charges repulsion because of the vibration of atoms of the superconducting metal surrounding them. The electrons in a Cooper pair also can’t easily quit their embrace because, once they become bound, the total energy they constitute as a pair is lower than the energy that would be destabilising in any other circumstances.

Could Spectral‘s creatures have represented such superconducting states of matter? It’s definitely science fiction because it’s not too far beyond the bounds of what we know about BEC today (at least in terms of a concept). And in being science fiction, Spectral assumes the liberty to make certain leaps of reasoning – one being, for example, how a BEC-creature is able to ram against an M1 Abrams and still not dissipate. Or how a BEC-creature is able to sit on an electric transformer without blowing up. I get that these in fact are the sort of liberties a sci-fi script is indeed allowed to take, so there’s little point harping on them. However, that Clyne figured the creatures ought to be BECs prompted way more disbelief than anything else because BECs are in the here and the now – and they haven’t been known to behave anything like the creatures in Spectral do.

For some, this information might even help decide if a movie is sci-fi or fantasy. To me, it’s sci-fi.

SPOILERS END

On the more imaginative side of things, Spectral also dwells for a bit on how these creatures might have been created in the first place and how they’re conscious. Any answers to these questions, I’m pretty sure, would be closer to fantasy than to sci-fi. For example, I wonder how the computing capabilities of a very large neural network seen at the end of the movie (not a spoiler, trust me) were available to the creatures wirelessly, or where the power source was that the soldiers were actually after. Spectral does try to skip the whys and hows by having Clyne declare, “I guess science doesn’t have the answer to everything” – but you’re just going “No shit, Sherlock.”

His character is, as this Verge review puts it, exemplarily shallow while the movie never suggests before the climax that science might indeed have all the answers. In fact, the movie as such, throughout its 108 minutes, wasn’t that great for me; it doesn’t ever live up to its billing as a “supernatural Black Hawk Down“. You think about BHD and you remember it being so emotional – Spectral has none of that. It was just obviously more fun to think about the implications of its antagonists being modelled after a phenomenon I’ve often read/written about but never thought about that way.

A simplification of superfluidity

“Once people tell me what symmetry the system starts with and what symmetry it ends up with, and whether the broken symmetries can be interchanged, I can work out exactly how many bosons there are and if that leads to weird behavior or not,” Murayama said. “We’ve tried it on more than 10 systems, and it works out every single time.”

– Haruki Watanabe, co-author of the paper

To those who’ve followed studies on superfluidity and spontaneous symmetry-breaking, a study by Hitoshi Murayama and Haruki Watanabe at UC, Berkeley, will come as a boon. It simplifies our understanding of symmetry-breaking for practical considerations by unifying the behaviour of supercooled matter – such as BEC and superfluidity – and provides a workable formula to derive the number of Nambu-Goldstone bosons given the symmetry of the system during a few phases!

This is the R&D article that serves as a lead-in into the issue.

This is a primer on spontaneous symmetry-breaking (and the origins of the Higgs boson).

Finally, and importantly, the pre-print paper (from arXiv) can be viewed here. Caution: don’t open the paper if you’re not seriously good at math.