Science’s humankind shield

We need to reconsider where the notion that “science benefits all humans” comes from and whether it is really beneficial.

I was prompted to this after coming upon a short article in Sky & Telescope about the Holmdel Horn antenna in New Jersey being threatened by a local redevelopment plan. In the 1960s, Arno Penzias and Robert Wilson used the Holmdel Horn to record the first observational evidence of the cosmic microwave background, which is radiation leftover from – and therefore favourable evidence for – the Big Bang event. In a manner of speaking, then, the Holmdel Horn is an important part of the story of humans’ awareness of their place in the universe.

The US government designated the site of the antenna a ‘National Historic Landmark’ in 1989. On November 22, 2022, the Holmdel Township Committee nonetheless petitioned the planning board to consider redeveloping the locality where the antenna is located. According to the Sky & Telescope article, “If the town permits development of the site, most likely to build high-end residences, the Horn could be removed or even destroyed. The fact that it is a National Historic Landmark does not protect it. The horn is on private property and receives no Federal funds for its upkeep.” Some people have responded to the threat by suggesting that the Holmdel Horn be moved to the sprawling Green Bank Telescope premises in Virginia. This would separate it from the piece of land that can then be put to other use.

Overall, based on posts on Twitter, the prevailing sentiment appears to be that the Holmdel Horn antenna is a historic site worthy of preservation. One commenter, an amateur astronomer, wrote under the article:

“The Holmdel Horn Antenna changed humanity’s understanding of our place in the universe. The antenna belongs to all of humanity. The owners of the property, Holmdel Township, and Monmouth County have a historic responsibility to preserve the antenna so future generations can see and appreciate it.”

(I think the commenter meant “humankind” instead of “humanity”.)

The history of astronomy involved, and involves, thousands of antennae and observatories around the world. Even with an arbitrarily high threshold to define the ‘most significant’ discoveries, there are likely to be hundreds (if not more) of facilities that made them and could thus be deemed to be worthy of preservation. But should we really preserve all of them?

Astronomers, perhaps among all scientists, are likelier to be most keenly aware of the importance of land to the scientific enterprise. Land is a finite resource that is crucial to most, if not all, realms of the human enterprise. Astronomers experienced this firsthand when the Indigenous peoples of Hawai’i protested the construction of the Thirty Meter Telescope on Mauna Kea, leading to a long-overdue reckoning with the legacy of telescopes on this and other landmarks that are culturally significant to the locals, but whose access to these sites has come to be mediated by the needs of astronomers. In 2020, Nithyanand Rao wrote an informative article about how “astronomy and colonialism have a shared history”, with land and access to clear skies as the resources at its heart.


Also read:


One argument that astronomers arguing in favour of building or retaining these controversial telescopes have used is to claim that the fruits of science “belong to all of humankind”, including to the locals. This is dubious in at least two ways.

First, are the fruits really accessible to everyone? This doesn’t just mean the papers that astronomers publish based on work using these telescopes are openly and freely available. It also requires that the topics that astronomers work on need to be based on the consensus of all stakeholders, not just the astronomers. Also, who does and doesn’t get observation time on the telescope? What does the local government expect the telescope to achieve? What are the sorts of studies the telescope can and can’t support? Are the ground facilities equally accessible to everyone? There are more questions to ask, but I think you get the idea that claiming the fruits of scientific labour – at least astronomic labour – are available to everyone is disingenuous simply because there are many axes of exclusion in the instrument’s construction and operation.

Second, who wants a telescope? More specifically, what are the terms on which it might be fair for a small group of people to decide what “all of humankind” wants? Sure, what I’m proposing sounds comical – a global consensus mechanism just to make a seemingly harmless statement like “science benefits everyone” – but the converse seems equally comical: to presume benefits for everyone when in fact they really accrue to a small group and to rely on self-fulfilling prophecies to stake claims to favourable outcomes.

Given enough time and funds, any reasonably designed international enterprise, like housing development or climate financing, is likely to benefit humankind. Scientists have advanced similar arguments when advocating for building particle supercolliders: that the extant Large Hadron Collider (LHC) in Europe has led to advances in medical diagnostics, distributed computing and materials science, apart from confirming the existence of the Higgs boson. All these advances are secondary goals, at best, and justify neither the LHC nor its significant construction and operational costs. Also, who’s to say we wouldn’t have made these advances by following any other trajectory?

Scientists, or even just the limited group of astronomers, often advance the idea that their work is for everyone’s good – elevating it to a universally desirable thing, propping it up like a shield in the face of questions about whether we really need an expensive new experiment – whereas on the ground its profits are disseminated along crisscrossing gradients, limited by borders.

I’m inclined to harbour a similar sentiment towards the Holmdel Horn antenna in the US: it doesn’t belong to all of humanity, and if you (astronomers in the US, e.g.) wish to preserve it, don’t do it in my name. I’m indifferent to the fate of the Horn because I recognise that what we do and don’t seek to preserve is influenced by its significance as an instrument of science (in this case) as much as by ideas of national prestige and self-perception – and this is a project in which I have never had any part. A plaque installed on the Horn reads: “This site possesses national significance in commemorating the history of the United States of America.”

I also recognise the value of land and, thus, must acknowledge the significance of my ignorance of the history of the territory that the Horn currently occupies as well as the importance of reclaiming it for newer use. (I am, however, opposed in principle to the Horn being threatened by the prospect of “high-end residences” rather than affordable housing for more people.) Obviously others – most others, even – might feel differently, but I’m curious if a) scientists anywhere, other than astronomers, have ever systematically dealt with push-back along this line, and b) the other ways in which they defend their work at large when they can’t or won’t use the “benefits everyone” tack.

They’re trying to build a telescope

If a telescope like the TMT and a big physics experiment like the INO are being stalled for failing to account for the interests and sensibilities of the people already living at or near their planned sites, what should scientists do when they set out to plan for the next big observatory or similar installation at a new site? A new paper published by Nature on August 18, by a bunch of researchers from China, describes in great detail their efforts to qualify a new “astronomical observing site”. “On Earth’s surface,” their paper begins, “there are only a handful of high-quality astronomical sites that meet the requirements for very large next-generation facilities. In the context of scientific opportunities in time-domain astronomy, a good site on the Tibetan Plateau will bridge the longitudinal gap between the known best sites (all in the Western Hemisphere). The Tibetan Plateau is the highest plateau on Earth, with an average elevation of over 4,000 metres, and thus potentially provides very good opportunities for astronomy and particle astrophysics.” In the paper, the researchers explain their estimates of the available observing time; seeing with a differential image motion monitor; and air stability and turbulence and water vapour over the site – near a town named Lenghu in the Qinghai province (central China).

Such exhaustive detail may be common when it comes to qualifying one astronomical observing spot over another, but information about the mountain, the town, the people who live there, how they use the land, the cultural significance of their natural surroundings and – given that Qinghao is on the Tibetan plateau – if the installation of a telescope, if and when that happens, will be perceived as yet another form of colonialism by the Chinese state are all conspicuous by absence. I’m sure most readers of this blog are familiar with the TMT – short for Thirty-Meter Telescope – story: residents of Mauna Kea, where the observatory is to be built, protested and stopped its construction in 2014. Work resumed only in 2019 after a series of interventions, one outcome of which was that the international astronomy community had to reckon with its colonial history and present. Let me quote at length from an article Nithyanand Rao wrote for The Wire Science in 2020, about the “shared history” of astronomy and colonialism:

[Leandra] Swanner finds that for native Hawaiians, “science has effectively become an agent of colonisation”, “fundamentally indistinguishable from earlier colonisation activities”. This puts astronomers in a difficult position. They see the economic benefits astronomy brings to Hawai’i – over a thousand jobs, business for local firms and services and, once the TMT comes online, a promise to pay $1 million in annual lease rent — and their own work as a noble pursuit of knowledge. However, they encounter opposition that has charged them with environmental and cultural destruction.

“Unfortunately for the astronomers involved in the TMT debate,” writes Swanner, “whether they identify as indigenous allies or neocolonialists ultimately matters less than whether they are perceived as practicing neocolonialist science” (emphasis in the original).

Astronomers have attempted a counter-narrative, linking the contemporary practice of astronomy to ancient Polynesian explorers and astronomers who navigated using the stars. A concrete outcome and centrepiece of this effort was a science education centre and planetarium that “links to early Polynesian navigation history and knowledge of the night skies, and today’s renaissance of Hawaiian culture and wayfinding with parallel growth of astronomy and scientific developments on Hawaii island.”

Swanner notes the unequal relationship – the centre “merely grafts Native Hawaiian culture onto the dominant culture of Western science … Astronomers do not look to traditional knowledge to carry out their observing runs, after all, but the observatories studding the summit physically deny access to sites of sacred importance.”

The story of the India-based Neutrino Observatory is equally cynical, and equally problematic in a different way. When I commissioned Rao, and Virat Markandeya, to investigate the INO’s ‘situation’ in 2016, some four years after the Indian government had permitted its constriction, for The Wire, I assumed that it was being held back by bureaucratic inefficiency, as is so common in India, and a mulch of pseudoscience and regional politics in Tamil Nadu. But when they were pursuing the story, I learnt of a small but interesting detail: since 2010, India has required any agency that prepares an environmental impact assessment report (for a project that might damage the environment) to be accredited by the Quality Council of India. The INO collaboration’s report had been prepared by an unaccredited body, and this presented a stumbling block. Members of the collaboration – physicists – thought this was okay, just a minor detail, but to the people protesting the project, it was one thorn among many that they’d come to identify with numerous projects that governments have approved in India and which have overlooked the rights of the people living near those projects. And in the INO’s case, the principal offenders have been the Department of Atomic Energy and the Tamil Nadu Pollution Control Board, helped along of late by the Ministry of Environment, Forests and Climate Change. It struck me that people overlooking the little things was, for many of those at the receiving end of the new India’s ‘acche din’, a perfectly legitimate reason to suspect something was up. I’m bummed that the INO isn’t being built (and in fact could be cancelled, if the state’s new chief minister M.K. Stalin has his way – although I was confused when he expressed his opposition to the INO but his government had, a month or so ago, allowed the embattled Sterlite copper-smelting unit in Thoothukudi to reopen) but I wouldn’t have the project’s still being stalled any other way.

The problem is what counts as due process, and who gets to decide. As Swanner has noted, a bunch of astronomers “grafting” one idea onto another was for them the right way to go – but it’s of little use to the people in Hawai’i who are afraid of losing access to what is to them a culturally and spiritually significant location, in exchange for something originally conceived to benefit other people. (It was also quite ironic when astronomers were pissed after SpaceX’s Starlink constellation satellites began to obstruct astronomical observations of the night sky, and began to complain that the sky is a global commons, etc. It’s perhaps a greater irony that India – which contributes to 10% of the TMT collaboration – wants the telescope to be shifted away from Mauna Kea, to a different site, because of the threat of future protests – the same India that has almost amended all the country’s environmental laws to include a ‘pay and pollute’ clause.) The INO outreach team has insisted that it conducted regular and effective outreach among the people of Theni, the district in which the INO’s site is located, but they may have overlooked the wider environment of cynicism and bureaucratic dishonesty in which their efforts, and the public perception of those efforts, was couched.

Environmental activist and writer (and my former teacher) Nityanand Jayaraman told me sometime between 2016 and 2020 that at no time did the governments of India and Tamil Nadu nor the INO collaboration give themselves or the people of Theni opposed to the project the option of moving the experiment to a different location. When the latter group did demand that the project be moved away, members of the INO collaboration and other scientists that Rao and Markandeya spoke to countered that the protestors’ reasons were pseudoscientific (most of them were pseudoscientific) – but this was hardly the point. The protestors had no need to be scientific any more than they had to be guaranteed their rights and other entitlements. (It nags me that ‘solving’ the latter is a much larger problem than the proponents of one project could accommodate, but I don’t know what else I’d advocate.)

And now, astronomers in China have published a paper expressing their excitement about having spotted a new location at which to mount a telescope, themselves overlooking considerations of whether the people who are already there might be okay with it. As a result they may have effectively shut one option out. This is an important factor because, as Rao has written (see excerpt below), many people seem to think that Hawaiians’ resistance to the TMT and others of its kind on the islands is fairly recent; this is not true. They expressed their opposition how they could; the rest of us didn’t pay attention. From Rao’s article:

For a historically informed understanding of the conflict, we have to go back much further, to Hawaii’s annexation by the US in 1898, following which land was ceded to the US government.

In 1959, these lands – including Mauna Kea – were in turn ceded by the US government to the State of Hawai’i, which held them “in trust” for native Hawaiians. The next year, a tsunami laid waste to the city of Hilo in Hawai’i, prompting its chamber of commerce to write to universities in the US and Japan suggesting that Mauna Kea might be useful for astronomical observatories. This event coincided with US astronomers’ interest in Hawai’i as well.

And so the conflict between native Hawaiians and the American astronomy community began in the 1960s, when the first of the 13 observatories was constructed on the mountain that the former consider to be “a place revered as a house of worship, an ancestor, and an elder sibling in the mo’okū’auhau (or genealogical succession) of all Hawaiians.”

At the time, writes [Iokepa] Casumbal-Salazar, “there was no public consultation, no clear management process and little governmental oversight.” Environmentalists soon began opposing further construction on the mountain, arguing that the existing telescopes had contaminated local aquifers and destroyed the habitat of a rare bug found only on the mountain’s summit. …

Contrary to the narrative that native Hawaiians did not oppose the first telescopes on Mauna Kea in the 1960s and 1970s, Casumbal-Salazar shows how they did indeed express their dissent “in the few public forums available, by writing newspaper editorials, publishing opinion pieces and speaking out at public events” while also fighting other battles, such as those to reclaim their rights to land, resources, cultural practices — even the right to teach their children in the Hawaiian language.

They were also fighting evictions and resettlements in the name of tourism development and decades of the US Navy’s use of an island as target practice for its bombs. At the same time, the state’s dependence on tourism and militarism resulted in income inequalities and emigration. …

Similarly, native communities and environmentalists opposed the Kitt Peak National Observatory in Arizona, concerned about the ecology and “spiritual integrity” of the mountain. At the time the new observatory was proposed, Kitt Peak was already host to two dozen telescopes.

Today, moving the TMT or any of the other observatories away will be no small feat: they draw hundreds of thousands of dollars in grants and investments every year, not to mention setting them up took decades of work. To echo Jayaraman, not having any observatories here is no longer an option. And this is the same future the new Chinese Nature paper seems to augur: pick a spot, plan a telescope, and then ask the locals if they’re okay with it. If they’re not, tough luck. To borrow a few words from the abstract of Casumbal-Salazar’s thesis, it will become another push for a telescope “realised through law and rationalised by science”.

(I’m not sure if a lot of people got the headline – a play on the name of a song by System of a Down.)

Rupavardhini B.R. read a draft of this post before it was published.

Playing the devil’s advocate on Starlink

After SpaceX began to launch its Starlink satellite constellation to facilitate global internet coverage, astronomers began complaining that the satellites are likely to interfere with stargazing schemes, especially those of large, sensitive telescopes. Spaceflight stakeholders also began to worry, especially after SpaceX’s announcement that the Starlink constellation is in fact the precursor to a mega-constellation of at least 12,000 satellites, that it could substantially increase space traffic and complicate satellite navigation.

Neither of these concerns is unfounded, primarily because neither SpaceX nor the branch of the American government responsible for regulating payloads – so by extension the American government itself – should get to decide how to use a resource that belongs to the whole world by itself, without proper multi-stakeholder consultation. With Starlink as its instrument, and assuming the continued absence of proper laws to control how mega-constellations are to be designed and operated, SpaceX will effectively colonise a big chunk of the orbital shells around Earth. The community of astronomers has been especially vocal and agitated over Starlink’s consequences for its work, and a part of it has directed its protests against what it sees as SpaceX’s misuse of space as a global commons, and as a body of shared cultural heritage.

The idea of space as a public commons is neither new nor unique but the ideal has seldom been met. The lopsided development of spaceflight programmes around the world, but particularly in China and the US, attests to this. In the absence of an international space governance policy that is both rigid enough to apply completely to specific situations and flexible enough to adapt to rapid advancements in private spaceflight, people and businesses around the world are at the mercy of countries that possess launch vehicles, the regulatory bodies that oversee their operations and the relationship between the two (or more) governments. So space is currently physically available and profitable only to a select group of countries.

The peaceful and equitable enjoyment of space, going by the definition that astronomers find profitable, is another matter. Both the act and outcomes of stargazing are great sources of wonder for many, if not all, people while space itself is not diminished in any way by astronomers’ activities. NASA’s ‘Astronomy Picture of the Day’ platform has featured hundreds of spectacular shots of distant cosmological features captured by the Hubble Space Telescope, and news of the soon-to-be-launched James Webb Space Telescope is only met with awe and a nervous excitement over what new gems its hexagonal eyes will discover.

Astronomy often is and has been portrayed as an innocent and exploratory exercise that uncovers the universe’s natural riches, but closer to the ground, where the efforts of its practitioners are located, it is not so innocent. Indeed, it represents one of the major arms of modern Big Science, and one of Big Science’s principal demands is access to large plots of land, often characterised by its proponents as unused land or land deemed unprofitable for other purposes.

Consider Mauna Kea, the dormant volcano in Hawaii with a peak height of 4.2 km above sea level. Its top is encrusted with 13 telescopes, but where astronomers continued to see opportunity to build more (until the TMT became as controversial as it did), Native Hawaiians saw encroachment and destruction to an area they consider sacred. Closer home, one of the principle prongs of resistance to the India-based Neutrino Observatory, a large stationary detector that a national collaboration wants to install inside a small mountain, has been that its construction will damage the surrounding land – land that the collaboration perceives to be unused but which its opponents in Tamil Nadu (where the proposed construction site is located) see, given the singular political circumstances, as an increasingly precious and inviolable resource. This sentiment in turn draws on past and ongoing resistance to the Kudankulam nuclear power plant, the proposed ISRO launchpad at Kulasekarapattinam and the Sterlite copper-smelting plant in Tamil Nadu, and the Challakere ‘science city’ in Karnataka, all along the same lines.

Another way astronomy is problematic is in terms of its enterprise. That is, who operates the telescopes that will be most affected by the Starlink mega-constellation, and with whom do the resulting benefits accrue? Arguments of the ‘fix public transport first before improving spaceflight’ flavour are certainly baseless (for principles as well as practicalities detailed here) but it would be similarly faulty for a working definition of a global commons to originate from a community of astronomers located principally in the West, for whom clear skies are more profitable than access to low-cost internet.

More specifically, to quote Prakash Kashwan, a senior research fellow at the Earth System Governance Project:

The ‘good’ in public good refers to an ‘economic good’ or a thing – as in goods and services – that has two main characteristics: non-excludability and non-rivalry. Non-excludability refers to the fact that once a public good is provided, it is difficult to exclude individuals from enjoying its benefits even if they haven’t contributed to its provisioning. Non-rivalry refers to the fact that the consumption of a public good does not negatively impact other individuals’ ability to also benefit from a public good.

In this definition, astronomy (involving the use of ground-based telescopes) has often been exclusive, whether as a human industry in its need for land and designation of public goods as ‘useless’ or ‘unused’, or as a scientific endeavour, whereby its results accrue unevenly in society especially without public outreach, science communication, transparency, etc. Starlink, on the other hand, is obviously rivalrous.

There’s no question that by gunning for a mega-constellation of satellites enveloping Earth, Musk is being a bully (irrespective of his intentions) – but it’s also true that the prospect of low-cost internet promises to render space profitable to more people than is currently the case. So if arguments against his endeavour are directed along the trajectory that Starlink satellites damage, diminish access to and reduce the usefulness of some orbital regions around Earth, instead of against the US government’s unilateral decision to allow the satellites to be launched in the first place, it should be equally legitimate to claim that these satellites also enhance the same orbital regions by extracting more value from them.

Ultimately, the ‘problem’ is also at risk of being ‘resolved’ because Musk and astronomers have shaken hands on it. The issue isn’t whether astronomers should be disprivileged to help non-astronomers or vice versa, but to consider if astronomers’ comments on the virtues of astronomy gloss over their actions on the ground and – more broadly – to remember the cons of prioritising the character of space as a source of scientific knowledge over other, more germane opportunities, and to remind everyone that the proper course of action would be to do what neither Musk and the American government nor the astronomers have done at the moment. That is, undertake public consultation, such as with stakeholders in all countries party to the Outer Space Treaty, instead of assuming that de-orbiting or anything else for that matter is automatically the most favourable course of action.

‘World class’ optical telescope – India’s largest – to be activated near Nainital

Update: This article was written before the telescope was activated yesterday. Here’s the PIB announcement.

India’s largest ground-based optical telescope, in Devasthal in Uttarakhand, is set to be switched on on March 30 by the Prime Ministers of India and Belgium from Brussels, during Narendra Modi’s day-long visit to the country. The telescope is the product of an Indo-Belgian collaboration, assisted by the Russian Academy of Sciences, that was kicked off in 2007. It is going to be operated by the Aryabhatta Research Institute of Observational Sciences (ARIES), an autonomous research body under the Department of Science and Technology.

The instrument is part of a widening foray into observational research in astronomy that India has undertaken since the 1960s, and bolstered with the successful launch of its first multi-wavelength satellite (ASTROSAT) in September 2015. And apart from the merits it will accord Indian astronomy, the Devasthal optical telescope will also be Asia’s largest ground-based optical telescope, succeeding the Vainu Bappu Observatory in Kavalur, Tamil Nadu.

A scan of the sketch of the 3.6-m optical telescope. Credit: ARIES
A scan of the sketch of the 3.6-m optical telescope. Credit: ARIES

Its defining feature will be a 3.6-metre-wide primary mirror, which will collect light from its field of view and focus it onto a 0.9-m secondary mirror, which in turn will divert it into various detectors for analysis. This arrangement, called the Ritchey-Chrétien design, is also what ASTROSAT employs – but with a 30-cm-wide primary mirror. In fact, by contrast, the mirrors and six instruments of ASTROSAT all weigh 1,500 kg while the Devasthal telescope’s primary mirror alone weighs 4,000 kg.

A better comparison would be the Hubble space telescope. It manages to capture the stunning cosmic panoramas it does with a primary mirror that’s 2.4 m wide. However, Hubble’s clarity is much better because it is situated in space, where Earth’s atmosphere can’t interfere with what it sees.

Nonetheless, the Devasthal telescope is located in a relatively advantageous position for itself – atop a peak 2.5 km high, 50 km west of Nainital. A policy review published in June 2007 notes that the location was chosen following “extensive surveys in the central Himalayas” from 1980 to 2001. These surveys check for local temperature and humidity variations, the amount of atmospheric blurring and the availability of dark nights (meeting some rigorous conditions) for observations. As the author of the paper writes, “The site … has a unique advantage of the geographical location conducive for astronomical observations of those optical transient and variable sources which require 24 h continuous observations and can not be observed from [the] east, in Australia, or [the] west, in La Palma, due to day light.”

From this perch, the telescope will be able to log the physical and chemical properties of stars and star clusters; high-energy radiation emanating from sources like blackholes; and the formation and properties of exoplanets. The data will be analysed using three attendant detectors:

  • High-resolution Spectrograph, developed by the Indian Institute of Astrophysics, Bengaluru
  • Near Infrared Imaging Camera, developed by the Tata Institute of Fundamental Research, Mumbai
  • Low-resolution Spectroscopic Camera

“India has collaborated with a Belgian company called AMOS to produce this [telescope], which is the first of its kind in the whole of Asia,” said Vikas Swarup, spokesperson of the Ministry of External Affairs, in a statement. AMOS, an acronym for Advanced Mechanical and Optical Systems, was contracted in 2007 to build and install the mirrors.

When Modi and Michel complete the so-called ‘technical activation’ to turn the Devasthal instrument on, it will join a cluster of scopes at the Indian astronomical research community’s disposal to continue surveying the skies. Some of these other scopes are the Giant Metre-wave Radio Telescope, Pune; Multi Application Solar Telescope, Udaipur; MACE gamma-ray telescope, Hanle; Indian Astronomical Observatory, Leh; Pachmarhi Array of Cherenkov Telescopes, Pachmarhi; and the Ooty Radio Telescope, Udhagamandalam.

In fact, over the last few years, the Indian research community has positioned itself as an active player in international Big Astronomy. In 2009, it pitched to host a third advanced gravitational-waves observatory, following the installation of two in the US, and received governmental approval for it in February 2016. Second: in December 2014, India decided to become a full partner with the Thirty Meter Telescope (TMT) collaboration, a bid to construct an optical telescope with a primary mirror 30 metres wide. After facing resistance from the people living around the venerated mountain Mauna Kea, in Hawaii, atop which it was set to be built, there are talks of setting it up in Hanle. Third: in January 2015, the central government gave the go-ahead to build a neutrino observatory (INO) in Theni, Tamil Nadu. This project has since stalled for want of various state-level environmental clearances.

All three projects are at the cutting edge of modern astronomy, incorporating techniques that have originated in this decade, techniques that take a marked break from the conventions in use since the days of Galileo. That Modi has okayed the gravitational waves observatory is worth celebrating – but the choices various officials will make concerning the INO and the TMT are still far from clear.

The Wire
March 30, 2016

Ways of seeing

A lot of the physics of 2015 was about how the ways in which we study the natural world had been improved or were improving.

Curious Bends – WhatsApp doc, nuclear nonsense, AIDS in Mizoram and more

1. As they amass a bigger nuclear arsenal, both India and Pakistan also attend a non-proliferation conference every year

“While most of the momentum behind the humanitarian initiative comes from non-nuclear weapons states, its success ultimately depends on how it influences states with nuclear weapons. Because India and Pakistan are the only two such states that have consistently attended the conferences, it’s important to assess their respective incentives for participation.” (5 min read, thebulleting.org)

2. An AIDS epidemic in Mizoram is about to start

“This infrastructure worked well until a year ago. Till 2010, said an official in the state AIDS control society, the number of new HIV cases was rising every month in the state. And then, in 2010-’11, it slowed to about 100-150 new cases a month. Even this slower rate has meant that from 4,000 cases across the state in 2010, Mizoram now has double the number of cases – according to the official, about 9,000-10,000 cases. With this funding delay, this number of new cases might rise faster once more.” (12 min read, scroll.in)

3. Scientists need a ritual to reflect on all the evils that have enabled our world

“If it was we who discovered the expansion of the universe through the redshifts of galaxies, then it was we who stole Ahnighoto. If it was we who understood the nature of the atom, then it was we who bombed Hiroshima and Nagasaki. If it was we who cured smallpox, then it was we who ran the experiment at Tuskegee. We can’t choose our heritage, but we can choose how we live with it. In that respect, I think that we cannot in good faith take pride in the light if we do not also take responsibility for the dark.” (10 min read, slate.com)

+ The author of this piece, Ben Lillie, is a scientist-turned-writer.

4. Bill Gates: you can help the world save 34 million lives

“If we can prevent 10 million tuberculosis deaths, 21 million deaths from AIDS, and 3.3 million maternal fatalities, that comes to 34.3 million lives saved–a number roughly equivalent to the entire population of Canada.” This can be achieved mainly by doing things we already know how to do. (3 min read, qz.com)

5. WhatsApp doctors! You are here!

“When she joined NH four months ago, Bhende was only doing e-consults as part of the hospital’s experiments with digital OPDs. “We started with a variety of social media platforms, like Skype, Whatsapp, emails, SMS, but over time we have realised that Whatsapp works best,” says Bhende, who specialises in gestational diabetes and does consultations with over 350 patients on the app.” (3 min read, timesofindia.com)

Chart of the Week

“On April 25, Nepal was hit with the biggest earthquake in 80 years—but just how big was it? Amidst the destruction, there was a spat on the issue between the US and China. The US Geological Survey (USGS), which monitors earthquakes worldwide, reported that the Nepal earthquake measured at a magnitude of 7.8. However, the China Earthquakes Network Center (CENC), which hopes to provide a similar service, measured the same earthquake at a magnitude of 8.1. A difference of 0.3 in the magnitude of the seismic activity may not seem like much, but the apparently small differences in magnitudes of earthquakes reported by different agencies around the world are, in real-life, huge. Because if we are to believe the Chinese data, the Nepal earthquake may have been 2.8 times bigger than if we believe the US data.” (2 min read, qz.com)

How earthquakes are measured. Credit: qz.com
How earthquakes are measured. Credit: qz.com