Time and the pandemic

There is this idea in physics that the fundamental laws of nature apply the same way for processes moving both forwards and backwards in time. So you can’t actually measure the passage of time by studying these processes. Where does our sense of time, rather the passage of time, come from then? How do we get to tell that the past and future are two different things, and that time flows from the former to the latter?

We sense time because things change. Clock time is commonly understood to be a way to keep track of when and how often things change but in physics, time is not the master: change doesn’t arise because of time but time arises because of change. So time manifests in the laws of nature through things that change in time. One of the simplest such things is entropy. Specifically, the second law of thermodynamics states that as time moves forward, the entropy of an isolated system cannot decrease. Entropy thus describes an arrow of time.

This is precisely what the pandemic is refusing to do, at least as seen through windows set at the very back of a newsroom. Many reporters writing about the coronavirus may have the luxury of discovering change, and therefore the forward march of time itself, but for someone who is somewhat zoomed out – watching the proceedings from a distance, as it were – the pandemic has only suffused the news cycle with more and more copies of itself, like the causative virus itself.

It seems to me as if time has stilled. I have become numb to news about the virus, which I suspect is a coping mechanism, like a layer of armour inserted between a world relentlessly pelting me with bad news and my psyche itself. But the flip side of this protection is an inability to sense the passage of time as well as I was able before.

My senses are alert to mistakes of fact, as well as mostly of argument, that reporters make when reporting on the coronavirus, and of course to opportunities to improve sentence construction, structure, flow, etc. But otherwise, and thanks in fact to my limited engagement with this topic, it feels as if I wake up every morning, my fingers groaning at the prospect of typing the words “lockdown”, “coronavirus”, “COVID-19”, “herd immunity” and whatever else1. And since this is what I feel every morning, there is no sense of change. And without change, there is no time.

1. I mean no offence to those suffering the pandemic’s, and the lockdown’s, brutal health, economic, social, cultural and political consequences.

I would desperately like to lose my armour. The bad news will never stop coming but I would still like to get back to bad news that I got into journalism to cover, the bad news that I know what to do about… to how things were before, I suppose.

Oh, I’m aware of how illogical this line of introspection is, yet it persists! I believe one reason is that the pandemic is a passing cloud. It leapt out of the horizon and loomed suddenly over all of us, over the whole world; its pall is bleak but none of us doubts that it will also pass. The pandemic will end – everybody knows this, and this is perhaps also why the growing desperation for it to dissipate doesn’t feel misplaced, or unjustified. It is a cloud, and like all clouds, it must go away, and therefrom arises the frustration as well: if it can go away, why won’t it?

Is it true that everything that will last for a long time also build up over a long time? Climate change, for example, doesn’t – almost can’t – have a single onset event. It builds and builds all around us, its effects creeping up on us. With each passing day of inaction, there is even less that we can do than before to stop it; in fact, so many opportunities have been squandered or stolen by bad actors that all we have left to do is reduce consumption and lower carbon emissions. So with each passing day, the planet visits us with more reminders of how we have changed it, and in fact may never have it back to the way it once was.

Almost as if climate change happened so slowly, on the human scale at least, that it managed to weave itself into our sense of time, not casting a shadow on the clock as much as becoming a part of the clock itself. As humankind’s grandest challenge as yet, one that we may never fully surmount, climate change doesn’t arise because of time but time arises because of climate change. Perhaps speed and surprise is the sacrifice that time demands of that which aspires to longevity.

The pandemic, on the other hand, likely had a single onset… right? At least it seems so until you realise the pandemic is in fact the tip of the proverbial iceberg – the thing jutting above the waterline, better yet the tip of the volcano. There is a complicated mess brewing underground, and out of sight, to which we have all contributed. One day the volcano shoots up, plastering its surroundings with lava and shooting smoke and soot kilometres into the air. For a time, the skies are a nuclear-winter grey and the Sun is blotted out. To consider at this time that we could stave off all future eruptions by pouring tonnes of concrete into the smouldering caldera would be folly. The pandemic, like magma, like the truth itself, will out. So while the nimbuses of each pandemic may pass, all the storm’s ingredients will persist.

I really hope the world, and I do mean the world, will heed this lesson as the novel coronavirus’s most important, if only because our sense of time and our expectations of what the passage of time could bring need to encompass the things that cause pandemics as much as they have come to encompass the things that cause Earth’s climate to change. We’ve become used to thinking about this outbreak, and likely the ones before it, as transitory events that begin and end – but really, wrapped up in our unrelenting yearning for the pandemic to pass is a conviction that the virus is a short-lived, sublunary creature. But the virus is eternal, and so our response to it must also transform from the mortal to the immortal.

Then again, how I wish my mind submitted, that too just this once, to logic’s will sans resistance. No; it yearns still for the pandemic to end and for ‘normal’ to recommence, for time to flow as it once did, with the promise of bringing something new to the threshold of my consciousness every morning. I sense there is a line here between the long- and the short-term, between the individual and the collective, and ultimately between the decision to change myself and the decision to wait for others before I do.

I think, as usual, time will tell. Heh.

Writing itself is fantasy

The symbols may have been laid down on paper or the screen in whatever order but when we read, we read the words one at a time, one after another – linearly. Writing, especially of fiction, is an act of using the linear construction of meaning to tell a story whose message will be assimilated bit by bit into a larger whole that isn’t necessarily linear at all, and manages to evade cognitive biases (like the recency effect) that could trick the reader into paying more attention to parts of the story instead of the intangible yet very-much-there whole. Stories in fact come in many shapes. One of my favourites, Dune, is so good because it’s entirely spherical in the spacetime of this metaphor, each of its concepts like a three-dimensional ouroboros, connected end to end yet improbably layered over, under and around each other. The first four Harry Potter books are my least favourite pieces of good fantasy for their staunch linearity, even despite the use of time travel.

The plot of Embassytown struggles with this idea a little bit, with its fraction-like representation of meaning using pairs of words. Even then, China Miéville has a bit of a climb on his hands: his (human) readers consume the paired words one at a time, first the one on the top then the one on the bottom. So a bit of translation becomes necessary, an exercise in projecting a higher dimensional world in which words are semantically bipolar, like bar magnets each with two ends, onto the linguistic surface of one in which the words are less chimerical. Miéville is forced to be didactic (which he musters with some reluctance), expending a few dozen pages constructing rituals of similes the reader can employ to sync with the Ariekei, the story’s strange alien characters, but always only asymptotically so. We can after all never comprehend a reality that exists in six – or six-thousand – dimensions, much the same way the Higgs boson’s existence is a question of faith if you’re unfamiliar with the underlying mathematics and the same way a human mind and an alien mind can never truly, as they say, connect.

Arrival elevates this challenge, presenting us with alien creatures – the ‘heptapods’ – the symbols of whose communication are circular, each small segment of the circumference standing for one human word and the whole assemblage for meaning composed by a non-linear combination of words. I’m yet to read the book by Ted Chiang on which the film is based; notwithstanding the possibility that Chiang has discussed their provenance, I wonder if the heptapods think a complex thought that is translated into a clump of biochemical signals that then encode meaning in a stochastic process: not fully predictably, since we know through the simpler human experience that a complicated idea can be communicated using more than one combination of simpler ideas. One heptapod’s choice could easily differ from that of another.

The one human invention, and experience if you will, that recreates the narrative anxiety encoded in the Ariekei’s and heptapods’ attempts (through their respective authors’ skills, imagination, patience and whatever else) to communicate with humans is writing insofar as the same anxiety manifests in the use of a lower order form – linearity – to construct a higher order image. Thus from the reader’s perspective the writer inhabits an inferior totality, and the latter performs a construction, an assimilation, by synthesising the sphericity and wholeness of a story using fundamentally linear strands, an exercise in building a circle using lines, and using circles to build a sphere, and so forth.

Writing a story is in effect like convincing someone that an object exists but having no way other than storytelling to realise the object’s existence. Our human eyes will always see the Sun as a circle but we know it’s a sphere because there are some indirect ways to ascertain its sphericity, more broadly to ascertain the universe exists in three dimensions at least locally; the ‘simplest’ of these ways would be to entirely assume the Sun is spherical because that seems to simplify problem-solving. However, say one writer’s conceit is that the Sun really exists in eight dimensions and goes on to construct an elaborate story of adventure, discovery and contemplation to convince the reader that they’re right.

In this sense, the writer would draw upon our innate knowledge of the universe in three dimensions, and our knowledge and experience of the ways in which it and isn’t truthful, to build an emergent higher-order Thing. While this may seem like a work of science and/or fantasy fiction, the language humans use to build all of their stories, even the nonfiction, renders every act of story-telling a similarly architecturally constructive endeavour. No writer commences narration with the privilege of words meaning more than they stand for in the cosmos of three dimensions and perpetually forward-moving time nor sentences being parsed in any way other than through the straightforward progression of a single stream of words. Everything more complicated than whatever can be assembled with two-dimensional relationships requires a voyage through the fantastic to communicate.

A journey through Twitter and time, with the laws of physics

Say you’re in a dark room and there’s a flash. The light travels outward in all directions from the source, and the illumination seems to expand in a sphere. This is a visualisation of how the information contained in light becomes distributed through space.

But even though this is probably what you’d see if you observed the flash with a very high speed camera, it’s not the full picture. The geometry of the sphere captures only the spatial component of the light’s journey. It doesn’t say anything about the time. We can infer that from how fast the sphere expands but that’s not an intrinsic property of the sphere itself.

To solve this problem, let’s assume that we live in a world with two spatial dimensions instead of three (i.e. length and breadth only, no depth). When the flash goes off in this world, the light travels outward in an expanding circle, which is the two-dimensional counterpart of a sphere. At 1 second after the flash, say the circle is 2 cm wide. After 2 seconds, it’s 4 cm wide. After 3 seconds, it’s 8 cm wide. After 4 seconds, it’s 16 cm wide. And so forth.

If you photographed the circles at each of these moments and put the pictures together, you’d see something like this (not to scale):

And if you looked at this stack of circles from under/behind, you’d see what physicists call the light cone.

Credit: Stib/Wikimedia Commons, CC BY-SA 3.0

The cone is nothing but a stack of circles of increasing diameter. The circumference of each circle represents the extent to which the light has spread out in space at that time. So the farther into the future of an event – such as the flash – you go, the wider the light cone will be.

(The reason we assumed we live in a world of two dimensions instead of three should be clearer now. In our three-dimensional reality, the light cone would assume a four-dimensional shape that can be quite difficult to visualise.)

According to the special theory of relativity, all future light cones must be associated with corresponding past light cones, and light always flows from the past to the future.

To understand what this means, it’s important to understand the cones as exclusionary zones. The diameter of the cone at a specific time is the distance across which light has moved in that time. So anything that moves slower – such as a message written on a piece of paper tied to a rock thrown from A to B – will be associated with a narrower cone between A and B. If A and B are so far apart that even light couldn’t have spanned them in the given time, then B is going to be outside the cone emerging from A, in a region officially called elsewhere.

Now, light is just one way to encode information. But since nothing can move faster than at the speed of light, the cones in the diagram above work for all kinds of information, i.e. any other medium will simply be associated with narrower cones but the general principles as depicted in the diagram will hold.

For example, here’s something that happened on Twitter earlier today. I spotted the following tweet at 9.15 am:

When scrolling through the replies, I noticed that one of Air Vistara’s senior employees had responded to the complaint with an apology and an assurance that it would be fixed.

https://twitter.com/TheSanjivKapoor/status/1154223981358018561

Taking this to be an admission of guilt, and to an admission of there actually having been a mistake by proxy, I retweeted the tweet at 9.16 am. However, only a minute later, another account discovered that the label of ‘professor’ didn’t work with the ‘male’ option either, ergo the glitch didn’t have so much to do with the user’s gender as much as the algorithm was just broken. A different account brought this to my attention at 9.30 am.

So here we have two cones of information that can be recast as the cones of causality, intersecting at @rath_shyama’s tweet. The first cone of causality is the set of all events in the tweet’s past whose information contributed to it. The second cone of causality represents all events in whose past the tweet lies, such as @himdaughter’s, the other accounts’ and my tweets.

As it happens, Twitter interferes with this image of causality in a peculiar way (Facebook does, too, but not as conspicuously). @rath_shyama published her tweet at 8.02 am, @himdaughter quote-tweeted her at 8.16 am and I retweeted @himdaughter at 9.16 am. But by 9.30 am, the information cone had expanded enough for me to know that my retweet was possibly mistaken. Let’s designate this last bit of information M.

So if I had un-retweeted @himdaughter’s tweet at, say, 9.31 am, I would effectively have removed an event from the timeline that actually occurred before I could have had the information to act on it (i.e., M). The issue is that Twitter doesn’t record (at least not publicly anyway) the time at which people un-retweet tweets. If it had, then there would have been proof that I acted in the future of M; but since it doesn’t, it will look like I acted in the past of M. Since this is causally impossible, the presumption arises that I had the information about M before others did, which is false.

This serves as an interesting commentary on the nature of history. It is not possible for Twitter’s users to remember historical events on its platform in the right order simply because Twitter is memoryless when it comes to one of the actions it allows. As a journalist, therefore, there is a bit of comfort in thinking about the pre-Twitter era, when all newsworthy events were properly timestamped and archived by the newspapers of record.

However, I can’t let my mind wander too far back, lest I stagger into the birth of the universe, when all that existed was a bunch of particles.

We commonly perceive that time has moved forward because we also observe useful energy becoming useless energy. If nothing aged, if nothing grew weaker or deteriorated in material quality – if there was no wear-and-tear – we should be able to throw away our calendars and pretend all seven days of the week are the same day, repeated over and over.+

Scientists capture this relationship between time and disorderliness in the second law of thermodynamics. This law states that the entropy – the amount of energy that can’t be used to perform work – of a closed system can never decrease. It can either remain stagnant or increase. So time does not exist as an entity in and of itself but only seems to as a measure of the increase in entropy (at a given temperature). We say a system has moved away from a point in its past and towards a point in its future if its entropy has gone up.

However, while this works just fine with macroscopic stuff like matter, things are a bit different with matter’s smallest constituents: the particles. There are no processes in this realm of the quantum whose passage will tell you which way time has passed – at least, there aren’t supposed to be.

There’s a type of particle called the B0 meson. In an experiment whose results were announced in 2012, physicists found unequivocal proof that this particle transformed into another one faster than the inverse process. This discrepancy provides an observer with a way to tell which way time is moving.

The experiment also remains the only occasion till date on which scientists have been able to show that the laws of physics don’t apply the same forward and backward in time. If they did, the forward and backward transformations would have happened at the same rate, and an observer wouldn’t have been able to tell if she was watching the system move into the future or into the past.

But with Twitter, it would seem we’re all clearly aware that we’re moving – inexorably, inevitably – into the future… or is that the past? I don’t know.

+ And if capitalism didn’t exist: in capitalist economies, inequality always seems to increase with time.