Scientists make video of molecule rotating

A research group in Germany has captured images of what a rotating molecule looks like. This is a significant feat because it is very difficult to observe individual atoms and molecules, which are very small as well as very fragile. Scientists often have to employ ingenious techniques that can probe their small scale but without destroying them in the act of doing so.

The researchers studied carbonyl sulphide (OCS) molecules, which has a cylindrical shape. To perform their feat, they went through three steps. First, the researchers precisely calibrated two laser pulses and fired them repeatedly – ~26.3 billion times per second – at the molecules to set them spinning.

Next, they shot a third laser at the molecules. The purpose of this laser was to excite the valence electrons forming the chemical bonds between the O, C and S atoms. These electrons absorb energy from the laser’s photons, become excited and quit the bonds. This leaves the positively charged atoms close to each other. Since like charges repel, the atoms vigorously push themselves apart and break the molecule up. This process is called a Coulomb explosion.

At the moment of disintegration, an instrument called a velocity map imaging (VMI) spectrometer records the orientation and direction of motion of the oxygen atom’s positive charge in space. Scientists can work backwards from this reading to determine how the molecule might have been oriented just before it broke up.

In the third step, the researchers restart the experiment with another set of OCS molecules.

By going through these steps repeatedly, they were able to capture 651 photos of the OCS molecule in different stages of its rotation.

These images cannot be interpreted in a straightforward way – the way we interpret images of, say, a rotating ball.

This is because a ball, even though it is composed of millions of molecules, has enough mass for the force of gravity to dominate proceedings. So scientists can understand why a ball rotates the way it does using just the laws of classical mechanics.

But at the level of individual atoms and molecules, gravity becomes negligibly weak whereas the other three fundamental forces – including the electromagnetic force – become more prominent. To understand the interactions between these forces and the particles, scientists use the rules of quantum mechanics.

This is why the images of the rotating molecules look like this:

Steps of the molecule’s rotation. Credit: DESY, Evangelos Karamatskos

These are images of the OCS molecule as deduced by the VMI spectrometer. Based on them, the researchers were also able to determine how long the molecule took to make one full rotation.

As a spinning ball drifts around on the floor, we can tell exactly where it is and how fast it is spinning. However, when studying particles, quantum mechanics prohibits observers from knowing these two things with the same precision at the same time. You probably know this better as Heisenberg’s uncertainty principle.

So if you have a fix on where the molecule is, that measurement prohibits you from knowing exactly how fast it is spinning. Confronted with this dilemma, scientists used the data obtained by the VMI spectrometer together with the rules of quantum mechanics to calculate the probability that the molecule’s O, C and S atoms were arranged a certain way at a given point of time.

The images above visualise these probabilities as a colour-coded map. With the position of the central atom (presumably C) fixed, the probability of finding the other two atoms at a certain position is represented on a blue-red scale. The redder a pixel is, the higher the probability of finding an atom there.

Rotational clock depicting the molecular movie of the observed quantum dynamics of OCS. Credit: doi.org/10.1038/s41467-019-11122-y

For example, consider the images at 12 o’clock and 6 o’clock: the OCS molecule is clearly oriented horizontally and vertically, resp. Compare this to the measurement corresponding to the image at 9 o’clock: the molecule appears to exist in two configurations at the same time. This is because, approximately speaking, there is a 50% probability that it is oriented from bottom-left to top-right and a 50% probability that it is oriented from bottom-right to top-left. The 10 o’clock figure represents the probabilities split four different ways. The ones at 4 o’clock and 8 o’clock are even more messy.

But despite the messiness, the researchers found that the image corresponding to 12 o’clock repeated itself once every 82 picoseconds. Ergo, the molecule completed one rotation every 82 picoseconds.

This is equal to 731.7 billion rpm. If your car’s engine operated this fast, the resulting centrifugal force, together with the force of gravity, would tear its mechanical joints apart and destroy the machine. The OCS molecule doesn’t come apart this way because gravity is 100 million trillion trillion times weaker than the weakest of the three subatomic forces.

The researchers’ study was published in the journal Nature Communications on July 29, 2019.

A journey through Twitter and time, with the laws of physics

Say you’re in a dark room and there’s a flash. The light travels outward in all directions from the source, and the illumination seems to expand in a sphere. This is a visualisation of how the information contained in light becomes distributed through space.

But even though this is probably what you’d see if you observed the flash with a very high speed camera, it’s not the full picture. The geometry of the sphere captures only the spatial component of the light’s journey. It doesn’t say anything about the time. We can infer that from how fast the sphere expands but that’s not an intrinsic property of the sphere itself.

To solve this problem, let’s assume that we live in a world with two spatial dimensions instead of three (i.e. length and breadth only, no depth). When the flash goes off in this world, the light travels outward in an expanding circle, which is the two-dimensional counterpart of a sphere. At 1 second after the flash, say the circle is 2 cm wide. After 2 seconds, it’s 4 cm wide. After 3 seconds, it’s 8 cm wide. After 4 seconds, it’s 16 cm wide. And so forth.

If you photographed the circles at each of these moments and put the pictures together, you’d see something like this (not to scale):

And if you looked at this stack of circles from under/behind, you’d see what physicists call the light cone.

Credit: Stib/Wikimedia Commons, CC BY-SA 3.0

The cone is nothing but a stack of circles of increasing diameter. The circumference of each circle represents the extent to which the light has spread out in space at that time. So the farther into the future of an event – such as the flash – you go, the wider the light cone will be.

(The reason we assumed we live in a world of two dimensions instead of three should be clearer now. In our three-dimensional reality, the light cone would assume a four-dimensional shape that can be quite difficult to visualise.)

According to the special theory of relativity, all future light cones must be associated with corresponding past light cones, and light always flows from the past to the future.

To understand what this means, it’s important to understand the cones as exclusionary zones. The diameter of the cone at a specific time is the distance across which light has moved in that time. So anything that moves slower – such as a message written on a piece of paper tied to a rock thrown from A to B – will be associated with a narrower cone between A and B. If A and B are so far apart that even light couldn’t have spanned them in the given time, then B is going to be outside the cone emerging from A, in a region officially called elsewhere.

Now, light is just one way to encode information. But since nothing can move faster than at the speed of light, the cones in the diagram above work for all kinds of information, i.e. any other medium will simply be associated with narrower cones but the general principles as depicted in the diagram will hold.

For example, here’s something that happened on Twitter earlier today. I spotted the following tweet at 9.15 am:

When scrolling through the replies, I noticed that one of Air Vistara’s senior employees had responded to the complaint with an apology and an assurance that it would be fixed.

https://twitter.com/TheSanjivKapoor/status/1154223981358018561

Taking this to be an admission of guilt, and to an admission of there actually having been a mistake by proxy, I retweeted the tweet at 9.16 am. However, only a minute later, another account discovered that the label of ‘professor’ didn’t work with the ‘male’ option either, ergo the glitch didn’t have so much to do with the user’s gender as much as the algorithm was just broken. A different account brought this to my attention at 9.30 am.

So here we have two cones of information that can be recast as the cones of causality, intersecting at @rath_shyama’s tweet. The first cone of causality is the set of all events in the tweet’s past whose information contributed to it. The second cone of causality represents all events in whose past the tweet lies, such as @himdaughter’s, the other accounts’ and my tweets.

As it happens, Twitter interferes with this image of causality in a peculiar way (Facebook does, too, but not as conspicuously). @rath_shyama published her tweet at 8.02 am, @himdaughter quote-tweeted her at 8.16 am and I retweeted @himdaughter at 9.16 am. But by 9.30 am, the information cone had expanded enough for me to know that my retweet was possibly mistaken. Let’s designate this last bit of information M.

So if I had un-retweeted @himdaughter’s tweet at, say, 9.31 am, I would effectively have removed an event from the timeline that actually occurred before I could have had the information to act on it (i.e., M). The issue is that Twitter doesn’t record (at least not publicly anyway) the time at which people un-retweet tweets. If it had, then there would have been proof that I acted in the future of M; but since it doesn’t, it will look like I acted in the past of M. Since this is causally impossible, the presumption arises that I had the information about M before others did, which is false.

This serves as an interesting commentary on the nature of history. It is not possible for Twitter’s users to remember historical events on its platform in the right order simply because Twitter is memoryless when it comes to one of the actions it allows. As a journalist, therefore, there is a bit of comfort in thinking about the pre-Twitter era, when all newsworthy events were properly timestamped and archived by the newspapers of record.

However, I can’t let my mind wander too far back, lest I stagger into the birth of the universe, when all that existed was a bunch of particles.

We commonly perceive that time has moved forward because we also observe useful energy becoming useless energy. If nothing aged, if nothing grew weaker or deteriorated in material quality – if there was no wear-and-tear – we should be able to throw away our calendars and pretend all seven days of the week are the same day, repeated over and over.+

Scientists capture this relationship between time and disorderliness in the second law of thermodynamics. This law states that the entropy – the amount of energy that can’t be used to perform work – of a closed system can never decrease. It can either remain stagnant or increase. So time does not exist as an entity in and of itself but only seems to as a measure of the increase in entropy (at a given temperature). We say a system has moved away from a point in its past and towards a point in its future if its entropy has gone up.

However, while this works just fine with macroscopic stuff like matter, things are a bit different with matter’s smallest constituents: the particles. There are no processes in this realm of the quantum whose passage will tell you which way time has passed – at least, there aren’t supposed to be.

There’s a type of particle called the B0 meson. In an experiment whose results were announced in 2012, physicists found unequivocal proof that this particle transformed into another one faster than the inverse process. This discrepancy provides an observer with a way to tell which way time is moving.

The experiment also remains the only occasion till date on which scientists have been able to show that the laws of physics don’t apply the same forward and backward in time. If they did, the forward and backward transformations would have happened at the same rate, and an observer wouldn’t have been able to tell if she was watching the system move into the future or into the past.

But with Twitter, it would seem we’re all clearly aware that we’re moving – inexorably, inevitably – into the future… or is that the past? I don’t know.

+ And if capitalism didn’t exist: in capitalist economies, inequality always seems to increase with time.

‘Weak charge’ measurement holds up SM prediction

Various dark matter detectors around the world, massive particle accelerators and colliders, powerful telescopes on the ground and in space all have their distinct agendas but ultimately what unites them is humankind’s quest to understand what the hell this universe is on about. There are unanswered questions in every branch of scientific endeavour that will keep us busy for millennia to come.

Among them, physics seems to be sufferingly uniquely, as it stumbles even as we speak through a ‘nightmare scenario’: the most sensitive measurements we have made of the physical reality around us, at the largest and smallest scales, don’t agree with what physicists have been able to work out on paper. Something’s gotta give – but scientists don’t know where or how they will find their answers.

The Qweak experiment at the Jefferson Lab, Virginia, is one of scores of experiments around the world trying to find a way out of the nightmare scenario. And Qweak is doing that by studying how the rate at which electrons scatter off a proton is affected by the electrons’ polarisation (a.k.a. spin polarisation: whether the spin of each electron is “left” or “right”).

Unlike instruments like the Large Hadron Collider, which are very big, operate at much higher energies, are expensive and are used to look for new particles hiding in spacetime, Qweak and others like it make ultra-precise measurements of known values, in effect studying the effects of particles both known and unknown on natural phenomena.

And if these experiments are able to find that these values deviate at some level from that predicted by the theory, physicists will have the break they’re looking for. For example, if Qweak is the one to break new ground, then physicists will have reason to suspect that the two nuclear forces of nature, simply called strong and weak, hold some secrets.

However, Qweak’s latest – and possibly its last – results don’t break new ground. In fact, they assert that the current theory of particle physics is correct, the same theory that physicists are trying to break free of.

Most of us are familiar with protons and electrons: they’re subatomic particles, carry positive and negative charges resp., and are the stuff of one chapter of high-school physics. What students of science find out quite later is that electrons are fundamental particles – they’re not made up of smaller particles – but protons are not. Protons are made up of quarks and gluons.

Interactions between electrons and quarks/gluons is mediated by two fundamental forces: the electromagnetic and the weak nuclear. The electromagnetic force is much stronger than the aptly named weak nuclear force. On the other hand, it is agnostic to the electron’s polarisation while the weak nuclear force is sensitive to it. In fact, the weak nuclear force is known to respond differently to left- and right-handed particles.

When electrons are bombarded at protons, the electrons are scattered off. Scientists at measure how often this happens and at what angle, together with the electrons’ polarisation – and try to find correlations between the two sets of data.

An illustration showing the expected outcomes when left- and right-handed electrons, visualised as mirror-images of each other, scatter off of a proton. Credit: doi:10.1038/s41586-018-0096-0
An illustration showing the expected outcomes when left- and right-handed electrons, visualised as mirror-images of each other, scatter off of a proton. Credit: doi:10.1038/s41586-018-0096-0

At Qweak, the electrons were accelerated to 1.16 GeV and bombarded at a tank of liquid hydrogen. A detector positioned near the tank picked up on electrons scattered at angles between 5.8º and 11.6º. By finely tuning different aspects of this setup, the scientists were able to up the measurement precision to 10 parts per billion.

For example, they were able to achieve a detection rate of 7 billion per second, a target luminosity of 1.7 x 1039 cm-2 s-1 and provide a polarised beam of electrons at 180 µA – all considered high for an experiment of this kind.

The scientists were looking for patterns in the detector data that would tell them something about the proton’s weak charge: the strength with which it interacts with electrons via the weak nuclear force. (Its notation is Qweak, hence the experiment’s name.)

At Qweak, they’re doing this by studying how the electrons are scattered versus their polarisation. The Standard Model (SM) of particle physics, the theory that physicists work with to understand the behaviour of elementary particles, predicts that the number of left- and right-handed electrons scattered should differ by one for every 10 million interactions. If this number is found to be bigger or smaller than usual when measured in the wild, then the Standard Model will be in trouble – much to physicists’ delight.

SM’s corresponding value for the proton’s weak charge is 0.0708. At Qweak, the value was measured to be 0.0719 ± 0.0045, i.e. between 0.0674 and 0.0764, completely agreeing with the SM prediction. Something’s gotta give – but it’s not going to be the proton’s weak charge for now.

Paper: Precision measurement of the weak charge of the proton

Featured image credit: Pexels/Unsplash.